import tensorflow as tf class Trainer: def __init__(self, model, optimizer, loss, strategy, path_experiment, args): self.model = model print(self.model.summary()) self.strategy = strategy self.optimizer = optimizer self.path_experiment = path_experiment self.args = args # self.metrics=[] with self.strategy.scope(): # loss_fn=tf.keras.losses.mean_absolute_error loss.reduction = tf.keras.losses.Reduction.NONE self.loss_object = loss self.train_mae_s1 = tf.keras.metrics.MeanAbsoluteError(name="train_mae_s1") self.train_mae = tf.keras.metrics.MeanAbsoluteError(name="train_mae_s2") self.val_mae = tf.keras.metrics.MeanAbsoluteError(name="validation_mae") self.val_loss = tf.keras.metrics.Mean(name="test_loss") def train_step(self, inputs): noisy, clean = inputs with tf.GradientTape() as tape: logits_2, logits_1 = self.model( noisy, training=True ) # Logits for this minibatch loss_value = tf.reduce_mean( self.loss_object(clean, logits_2) + tf.reduce_mean(self.loss_object(clean, logits_1)) ) grads = tape.gradient(loss_value, self.model.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.model.trainable_weights)) self.train_mae.update_state(clean, logits_2) self.train_mae_s1.update_state(clean, logits_1) return loss_value def test_step(self, inputs): noisy, clean = inputs predictions_s2, predictions_s1 = self.model(noisy, training=False) t_loss = self.loss_object(clean, predictions_s2) + self.loss_object( clean, predictions_s1 ) self.val_mae.update_state(clean, predictions_s2) self.val_loss.update_state(t_loss) @tf.function() def distributed_training_step(self, inputs): per_replica_losses = self.strategy.run(self.train_step, args=(inputs,)) reduced_losses = self.strategy.reduce( tf.distribute.ReduceOp.MEAN, per_replica_losses, axis=None ) return reduced_losses @tf.function def distributed_test_step(self, inputs): return self.strategy.run(self.test_step, args=(inputs,))