import os import numpy as np import tensorflow as tf import soundfile as sf from tqdm import tqdm import pandas as pd class Trainer(): def __init__(self, model, optimizer,loss, strategy, path_experiment, args): self.model=model print(self.model.summary()) self.strategy=strategy self.optimizer=optimizer self.path_experiment=path_experiment self.args=args #self.metrics=[] with self.strategy.scope(): #loss_fn=tf.keras.losses.mean_absolute_error loss.reduction=tf.keras.losses.Reduction.NONE self.loss_object=loss self.train_mae_s1=tf.keras.metrics.MeanAbsoluteError(name="train_mae_s1") self.train_mae=tf.keras.metrics.MeanAbsoluteError(name="train_mae_s2") self.val_mae=tf.keras.metrics.MeanAbsoluteError(name="validation_mae") self.val_loss = tf.keras.metrics.Mean(name='test_loss') def train_step(self,inputs): noisy, clean= inputs with tf.GradientTape() as tape: logits_2,logits_1 = self.model(noisy, training=True) # Logits for this minibatch loss_value = tf.reduce_mean(self.loss_object(clean, logits_2) + tf.reduce_mean(self.loss_object(clean, logits_1))) grads = tape.gradient(loss_value, self.model.trainable_weights) self.optimizer.apply_gradients(zip(grads, self.model.trainable_weights)) self.train_mae.update_state(clean, logits_2) self.train_mae_s1.update_state(clean, logits_1) return loss_value def test_step(self,inputs): noisy,clean = inputs predictions_s2, predictions_s1 = self.model(noisy, training=False) t_loss = self.loss_object(clean, predictions_s2)+self.loss_object(clean, predictions_s1) self.val_mae.update_state(clean,predictions_s2) self.val_loss.update_state(t_loss) @tf.function() def distributed_training_step(self,inputs): per_replica_losses=self.strategy.run(self.train_step, args=(inputs,)) reduced_losses=self.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_losses, axis=None) return reduced_losses @tf.function def distributed_test_step(self,inputs): return self.strategy.run(self.test_step, args=(inputs,))