denoising-historical-data/dataset_loader.py

565 lines
20 KiB
Python

import ast
import tensorflow as tf
import random
import os
import numpy as np
import soundfile as sf
import pandas as pd
import glob
from tqdm import tqdm
# generator function. It reads the csv file with pandas and loads the largest audio segments from each recording. If extend=False, it will only read the segments with length>length_seg, trim them and yield them with no further processing. Otherwise, if the segment length is inferior, it will extend the length using concatenative synthesis.
def __noise_sample_generator(info_file, fs, length_seq, split):
head = os.path.split(info_file)[0]
load_data = pd.read_csv(info_file)
# split= train, validation, test
load_data_split = load_data.loc[load_data["split"] == split]
load_data_split = load_data_split.reset_index(drop=True)
while True:
r = list(range(len(load_data_split)))
if split != "test":
random.shuffle(r)
for i in r:
segments = ast.literal_eval(load_data_split.loc[i, "segments"])
if split == "test":
loaded_data, Fs = sf.read(
os.path.join(
head,
load_data_split["recording"].loc[i],
load_data_split["largest_segment"].loc[i],
)
)
else:
num = np.random.randint(0, len(segments))
loaded_data, Fs = sf.read(
os.path.join(
head, load_data_split["recording"].loc[i], segments[num]
)
)
assert fs == Fs, "wrong sampling rate"
yield __extend_sample_by_repeating(loaded_data, fs, length_seq)
def __extend_sample_by_repeating(data, fs, seq_len):
rpm = 78
target_samp = seq_len
large_data = np.zeros(shape=(target_samp, 2))
if len(data) >= target_samp:
large_data = data[0:target_samp]
return large_data
bls = (1000 * 44100) / 1000 # hardcoded
window = np.stack((np.hanning(bls), np.hanning(bls)), axis=1)
window_left = window[0 : int(bls / 2), :]
window_right = window[int(bls / 2) : :, :]
bls = int(bls / 2)
rps = rpm / 60
period = 1 / rps
period_sam = int(period * fs)
overhead = len(data) % period_sam
if overhead > bls:
complete_periods = (len(data) // period_sam) * period_sam
else:
complete_periods = (len(data) // period_sam - 1) * period_sam
a = np.multiply(data[0:bls], window_left)
b = np.multiply(data[complete_periods : complete_periods + bls], window_right)
c_1 = np.concatenate((data[0:complete_periods, :], b))
c_2 = np.concatenate((a, data[bls:complete_periods, :], b))
c_3 = np.concatenate((a, data[bls::, :]))
large_data[0 : complete_periods + bls, :] = c_1
pointer = complete_periods
not_finished = True
while not_finished:
if target_samp > pointer + complete_periods + bls:
large_data[pointer : pointer + complete_periods + bls] += c_2
pointer += complete_periods
else:
large_data[pointer::] += c_3[0 : (target_samp - pointer)]
# finish
not_finished = False
return large_data
def generate_real_recordings_data(
path_recordings, fs=44100, seg_len_s=15, stereo=False
):
records_info = os.path.join(path_recordings, "audio_files.txt")
num_lines = sum(1 for line in open(records_info))
f = open(records_info, "r")
# load data record files
print("Loading record files")
records = []
seg_len = fs * seg_len_s
pointer = int(fs * 5) # starting at second 5 by default
for i in tqdm(range(num_lines)):
audio = f.readline()
audio = audio[:-1]
data, fs = sf.read(os.path.join(path_recordings, audio))
if len(data.shape) > 1 and not (stereo):
data = np.mean(data, axis=1)
# elif stereo and len(data.shape)==1:
# data=np.stack((data, data), axis=1)
# normalize
data = data / np.max(np.abs(data))
segment = data[pointer : pointer + seg_len]
records.append(segment.astype("float32"))
return records
def generate_paired_data_test_formal(
path_pianos,
path_noises,
noise_amount="low_snr",
num_samples=-1,
fs=44100,
seg_len_s=5,
extend=True,
stereo=False,
prenoise=False,
):
print(num_samples)
segments_clean = []
segments_noisy = []
seg_len = fs * seg_len_s
noises_info = os.path.join(path_noises, "info.csv")
np.random.seed(42)
if noise_amount == "low_snr":
SNRs = np.random.uniform(2, 6, num_samples)
elif noise_amount == "mid_snr":
SNRs = np.random.uniform(6, 12, num_samples)
scales = np.random.uniform(-4, 0, num_samples)
# SNRs=[2,6,12] #HARDCODED!!!!
i = 0
print(path_pianos[0])
print(seg_len)
train_samples = glob.glob(os.path.join(path_pianos[0], "*.wav"))
train_samples = sorted(train_samples)
if prenoise:
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len + fs, extend, "test"
) # Adds 1s of silence add the begiing, longer noise
else:
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, extend, "test"
) # this will take care of everything
# load data clean files
for file in tqdm(train_samples): # add [1:5] for testing
data_clean, samplerate = sf.read(file)
if samplerate != fs:
print("!!!!WRONG SAMPLE RATe!!!")
# Stereo to mono
if len(data_clean.shape) > 1 and not (stereo):
data_clean = np.mean(data_clean, axis=1)
# elif stereo and len(data_clean.shape)==1:
# data_clean=np.stack((data_clean, data_clean), axis=1)
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
# data_clean_loaded.append(data_clean)
# framify data clean files
# framify arguments: seg_len, hop_size
hop_size = int(seg_len) # no overlap
num_frames = np.floor(len(data_clean) / hop_size - seg_len / hop_size + 1)
print(num_frames)
if num_frames == 0:
data_clean = np.concatenate(
(data_clean, np.zeros(shape=(int(2 * seg_len - len(data_clean)),))),
axis=0,
)
num_frames = 1
data_not_finished = True
pointer = 0
while data_not_finished:
if i >= num_samples:
break
segment = data_clean[pointer : pointer + seg_len]
pointer = pointer + hop_size
if pointer + seg_len > len(data_clean):
data_not_finished = False
segment = segment.astype("float32")
# SNRs=np.random.uniform(2,20)
snr = SNRs[i]
scale = scales[i]
# load noise signal
data_noise = next(noise_generator)
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
# configure sizes
power_clean = np.var(segment)
# estimate noise power
if prenoise:
power_noise = np.var(new_noise[fs::])
else:
power_noise = np.var(new_noise)
snr = 10.0 ** (snr / 10.0)
# sum both signals according to snr
if prenoise:
segment = np.concatenate(
(np.zeros(shape=(fs,)), segment), axis=0
) # add one second of silence
summed = (
segment + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
summed = summed.astype("float32")
# yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
summed = 10.0 ** (scale / 10.0) * summed
segment = 10.0 ** (scale / 10.0) * segment
segments_noisy.append(summed.astype("float32"))
segments_clean.append(segment.astype("float32"))
i = i + 1
return segments_noisy, segments_clean
def generate_test_data(path_music, path_noises, num_samples=-1, fs=44100, seg_len_s=5):
segments_clean = []
segments_noisy = []
seg_len = fs * seg_len_s
noises_info = os.path.join(path_noises, "info.csv")
SNRs = [2, 6, 12] # HARDCODED!!!!
for path in path_music:
print(path)
train_samples = glob.glob(os.path.join(path, "*.wav"))
train_samples = sorted(train_samples)
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, "test"
) # this will take care of everything
# load data clean files
for file in tqdm(train_samples): # add [1:5] for testing
data_clean, samplerate = sf.read(file)
if samplerate != fs:
print("!!!!WRONG SAMPLE RATe!!!")
# Stereo to mono
if len(data_clean.shape) > 1:
data_clean = np.mean(data_clean, axis=1)
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
# data_clean_loaded.append(data_clean)
# framify data clean files
# framify arguments: seg_len, hop_size
hop_size = int(seg_len) # no overlap
num_frames = np.floor(len(data_clean) / hop_size - seg_len / hop_size + 1)
if num_frames == 0:
data_clean = np.concatenate(
(data_clean, np.zeros(shape=(int(2 * seg_len - len(data_clean)),))),
axis=0,
)
num_frames = 1
pointer = 0
segment = data_clean[pointer : pointer + (seg_len - 2 * fs)]
segment = segment.astype("float32")
segment = np.concatenate(
(np.zeros(shape=(2 * fs,)), segment), axis=0
) # I hope its ok
# segments_clean.append(segment)
for snr in SNRs:
# load noise signal
data_noise = next(noise_generator)
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
# configure sizes
# estimate clean signal power
power_clean = np.var(segment)
# estimate noise power
power_noise = np.var(new_noise)
snr = 10.0 ** (snr / 10.0)
# sum both signals according to snr
summed = (
segment + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
summed = summed.astype("float32")
# yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
segments_noisy.append(summed.astype("float32"))
segments_clean.append(segment.astype("float32"))
return segments_noisy, segments_clean
def generate_val_data(
path_music, path_noises, split, num_samples=-1, fs=44100, seg_len_s=5
):
val_samples = []
for path in path_music:
val_samples.extend(glob.glob(os.path.join(path, "*.wav")))
# load data clean files
print("Loading clean files")
data_clean_loaded = []
for ff in tqdm(range(0, len(val_samples))): # add [1:5] for testing
data_clean, samplerate = sf.read(val_samples[ff])
if samplerate != fs:
print("!!!!WRONG SAMPLE RATe!!!")
# Stereo to mono
if len(data_clean.shape) > 1:
data_clean = np.mean(data_clean, axis=1)
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
data_clean_loaded.append(data_clean)
del data_clean
# framify data clean files
print("Framifying clean files")
seg_len = fs * seg_len_s
segments_clean = []
for file in tqdm(data_clean_loaded):
# framify arguments: seg_len, hop_size
hop_size = int(seg_len) # no overlap
num_frames = np.floor(len(file) / hop_size - seg_len / hop_size + 1)
pointer = 0
for i in range(0, int(num_frames)):
segment = file[pointer : pointer + seg_len]
pointer = pointer + hop_size
segment = segment.astype("float32")
segments_clean.append(segment)
del data_clean_loaded
SNRs = np.random.uniform(2, 20, len(segments_clean))
scales = np.random.uniform(-6, 4, len(segments_clean))
# noise_shapes=np.random.randint(0,len(noise_samples), len(segments_clean))
noises_info = os.path.join(path_noises, "info.csv")
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, split
) # this will take care of everything
# generate noisy segments
# load noise samples using pandas dataframe. Each split (train, val, test) should have its unique csv info file
# noise_samples=glob.glob(os.path.join(path_noises,"*.wav"))
segments_noisy = []
print("Processing noisy segments")
for i in tqdm(range(0, len(segments_clean))):
# load noise signal
data_noise = next(noise_generator)
# Stereo to mono
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
data_clean = segments_clean[i]
# configure sizes
# estimate clean signal power
power_clean = np.var(data_clean)
# estimate noise power
power_noise = np.var(new_noise)
snr = 10.0 ** (SNRs[i] / 10.0)
# sum both signals according to snr
summed = (
data_clean + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
# the rest is normal
summed = 10.0 ** (scales[i] / 10.0) * summed
segments_clean[i] = 10.0 ** (scales[i] / 10.0) * segments_clean[i]
segments_noisy.append(summed.astype("float32"))
return segments_noisy, segments_clean
def generator_train(
path_music, path_noises, split, fs=44100, seg_len_s=5, extend=True, stereo=False
):
train_samples = []
for path in path_music:
train_samples.extend(glob.glob(os.path.join(path.decode("utf-8"), "*.wav")))
seg_len = fs * seg_len_s
noises_info = os.path.join(path_noises.decode("utf-8"), "info.csv")
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, split.decode("utf-8")
) # this will take care of everything
# load data clean files
while True:
random.shuffle(train_samples)
for file in train_samples:
data, samplerate = sf.read(file)
assert samplerate == fs, "wrong sampling rate"
data_clean = data
# Stereo to mono
if len(data.shape) > 1:
data_clean = np.mean(data_clean, axis=1)
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
# framify data clean files
# framify arguments: seg_len, hop_size
hop_size = int(seg_len)
num_frames = np.floor(len(data_clean) / seg_len)
if num_frames == 0:
data_clean = np.concatenate(
(data_clean, np.zeros(shape=(int(2 * seg_len - len(data_clean)),))),
axis=0,
)
num_frames = 1
pointer = 0
data_clean = np.roll(
data_clean, np.random.randint(0, seg_len)
) # if only one frame, roll it for augmentation
elif num_frames > 1:
pointer = np.random.randint(
0, hop_size
) # initial shifting, graeat for augmentation, better than overlap as we get different frames at each "while" iteration
else:
pointer = 0
data_not_finished = True
while data_not_finished:
segment = data_clean[pointer : pointer + seg_len]
pointer = pointer + hop_size
if pointer + seg_len > len(data_clean):
data_not_finished = False
segment = segment.astype("float32")
SNRs = np.random.uniform(2, 20)
scale = np.random.uniform(-6, 4)
# load noise signal
data_noise = next(noise_generator)
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
# configure sizes
if stereo:
# estimate clean signal power
power_clean = 0.5 * np.var(segment[:, 0]) + 0.5 * np.var(
segment[:, 1]
)
# estimate noise power
power_noise = 0.5 * np.var(new_noise[:, 0]) + 0.5 * np.var(
new_noise[:, 1]
)
else:
# estimate clean signal power
power_clean = np.var(segment)
# estimate noise power
power_noise = np.var(new_noise)
snr = 10.0 ** (SNRs / 10.0)
# sum both signals according to snr
summed = (
segment + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
summed = 10.0 ** (scale / 10.0) * summed
segment = 10.0 ** (scale / 10.0) * segment
summed = summed.astype("float32")
yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
def load_data(
buffer_size,
path_music_train,
path_music_val,
path_noises,
fs=44100,
seg_len_s=5,
extend=True,
stereo=False,
):
print("Generating train dataset")
trainshape = int(fs * seg_len_s)
dataset_train = tf.data.Dataset.from_generator(
generator_train,
args=(path_music_train, path_noises, "train", fs, seg_len_s, extend, stereo),
output_shapes=(tf.TensorShape((trainshape,)), tf.TensorShape((trainshape,))),
output_types=(tf.float32, tf.float32),
)
print("Generating validation dataset")
segments_noisy, segments_clean = generate_val_data(
path_music_val, path_noises, "validation", fs=fs, seg_len_s=seg_len_s
)
dataset_val = tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
return dataset_train.shuffle(buffer_size), dataset_val
def load_data_test(buffer_size, path_pianos_test, path_noises, **kwargs):
print("Generating test dataset")
segments_noisy, segments_clean = generate_test_data(
path_pianos_test, path_noises, extend=True, **kwargs
)
dataset_test = tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
# dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
# train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test
def load_data_formal(path_pianos_test, path_noises, **kwargs):
print("Generating test dataset")
segments_noisy, segments_clean = generate_paired_data_test_formal(
path_pianos_test, path_noises, extend=True, **kwargs
)
print("segments::")
print(len(segments_noisy))
dataset_test = tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
# dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
# train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test
def load_real_test_recordings(buffer_size, path_recordings, **kwargs):
print("Generating real test dataset")
segments_noisy = generate_real_recordings_data(path_recordings, **kwargs)
dataset_test = tf.data.Dataset.from_tensor_slices(segments_noisy)
# train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test