236 lines
7.7 KiB
Python
236 lines
7.7 KiB
Python
import os
|
|
import hydra
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def run(args):
|
|
import unet
|
|
import tensorflow as tf
|
|
import soundfile as sf
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
import scipy.signal
|
|
|
|
path_experiment = str(args.path_experiment)
|
|
|
|
unet_model = unet.build_model_denoise(unet_args=args.unet)
|
|
|
|
ckpt = os.path.join(
|
|
os.path.dirname(os.path.abspath(__file__)), path_experiment, "checkpoint"
|
|
)
|
|
unet_model.load_weights(ckpt)
|
|
|
|
def do_stft(noisy):
|
|
window_fn = tf.signal.hamming_window
|
|
|
|
win_size = args.stft.win_size
|
|
hop_size = args.stft.hop_size
|
|
|
|
stft_signal_noisy = tf.signal.stft(
|
|
noisy,
|
|
frame_length=win_size,
|
|
window_fn=window_fn,
|
|
frame_step=hop_size,
|
|
pad_end=True,
|
|
)
|
|
stft_noisy_stacked = tf.stack(
|
|
values=[tf.math.real(stft_signal_noisy), tf.math.imag(stft_signal_noisy)],
|
|
axis=-1,
|
|
)
|
|
|
|
return stft_noisy_stacked
|
|
|
|
def do_istft(data):
|
|
window_fn = tf.signal.hamming_window
|
|
|
|
win_size = args.stft.win_size
|
|
hop_size = args.stft.hop_size
|
|
|
|
inv_window_fn = tf.signal.inverse_stft_window_fn(
|
|
hop_size, forward_window_fn=window_fn
|
|
)
|
|
|
|
pred_cpx = data[..., 0] + 1j * data[..., 1]
|
|
pred_time = tf.signal.inverse_stft(
|
|
pred_cpx, win_size, hop_size, window_fn=inv_window_fn
|
|
)
|
|
return pred_time
|
|
|
|
audio = str(args.inference.audio)
|
|
data, samplerate = sf.read(audio)
|
|
print(data.dtype)
|
|
# Stereo to mono
|
|
if len(data.shape) > 1:
|
|
data = np.mean(data, axis=1)
|
|
|
|
if samplerate != 44100:
|
|
print("Resampling")
|
|
|
|
data = scipy.signal.resample(data, int((44100 / samplerate) * len(data)) + 1)
|
|
|
|
segment_size = 44100 * 5 # 20s segments
|
|
|
|
length_data = len(data)
|
|
overlapsize = 2048 # samples (46 ms)
|
|
window = np.hanning(2 * overlapsize)
|
|
window_right = window[overlapsize::]
|
|
window_left = window[0:overlapsize]
|
|
pointer = 0
|
|
denoised_data = np.zeros(shape=(len(data),))
|
|
residual_noise = np.zeros(shape=(len(data),))
|
|
numchunks = int(np.ceil(length_data / segment_size))
|
|
|
|
for i in tqdm(range(numchunks)):
|
|
if pointer + segment_size < length_data:
|
|
segment = data[pointer : pointer + segment_size]
|
|
# dostft
|
|
segment_TF = do_stft(segment)
|
|
segment_TF_ds = tf.data.Dataset.from_tensors(segment_TF)
|
|
pred = unet_model.predict(segment_TF_ds.batch(1))
|
|
pred = pred[0]
|
|
residual = segment_TF - pred[0]
|
|
residual = np.array(residual)
|
|
pred_time = do_istft(pred[0])
|
|
residual_time = do_istft(residual)
|
|
residual_time = np.array(residual_time)
|
|
|
|
if pointer == 0:
|
|
pred_time = np.concatenate(
|
|
(
|
|
pred_time[0 : int(segment_size - overlapsize)],
|
|
np.multiply(
|
|
pred_time[int(segment_size - overlapsize) : segment_size],
|
|
window_right,
|
|
),
|
|
),
|
|
axis=0,
|
|
)
|
|
residual_time = np.concatenate(
|
|
(
|
|
residual_time[0 : int(segment_size - overlapsize)],
|
|
np.multiply(
|
|
residual_time[
|
|
int(segment_size - overlapsize) : segment_size
|
|
],
|
|
window_right,
|
|
),
|
|
),
|
|
axis=0,
|
|
)
|
|
else:
|
|
pred_time = np.concatenate(
|
|
(
|
|
np.multiply(pred_time[0 : int(overlapsize)], window_left),
|
|
pred_time[int(overlapsize) : int(segment_size - overlapsize)],
|
|
np.multiply(
|
|
pred_time[
|
|
int(segment_size - overlapsize) : int(segment_size)
|
|
],
|
|
window_right,
|
|
),
|
|
),
|
|
axis=0,
|
|
)
|
|
residual_time = np.concatenate(
|
|
(
|
|
np.multiply(residual_time[0 : int(overlapsize)], window_left),
|
|
residual_time[
|
|
int(overlapsize) : int(segment_size - overlapsize)
|
|
],
|
|
np.multiply(
|
|
residual_time[
|
|
int(segment_size - overlapsize) : int(segment_size)
|
|
],
|
|
window_right,
|
|
),
|
|
),
|
|
axis=0,
|
|
)
|
|
|
|
denoised_data[pointer : pointer + segment_size] = (
|
|
denoised_data[pointer : pointer + segment_size] + pred_time
|
|
)
|
|
residual_noise[pointer : pointer + segment_size] = (
|
|
residual_noise[pointer : pointer + segment_size] + residual_time
|
|
)
|
|
|
|
pointer = pointer + segment_size - overlapsize
|
|
else:
|
|
segment = data[pointer::]
|
|
lensegment = len(segment)
|
|
segment = np.concatenate(
|
|
(segment, np.zeros(shape=(int(segment_size - len(segment)),))), axis=0
|
|
)
|
|
# dostft
|
|
segment_TF = do_stft(segment)
|
|
|
|
segment_TF_ds = tf.data.Dataset.from_tensors(segment_TF)
|
|
|
|
pred = unet_model.predict(segment_TF_ds.batch(1))
|
|
pred = pred[0]
|
|
residual = segment_TF - pred[0]
|
|
residual = np.array(residual)
|
|
pred_time = do_istft(pred[0])
|
|
pred_time = np.array(pred_time)
|
|
pred_time = pred_time[0:segment_size]
|
|
residual_time = do_istft(residual)
|
|
residual_time = np.array(residual_time)
|
|
residual_time = residual_time[0:segment_size]
|
|
if pointer == 0:
|
|
pred_time = pred_time
|
|
residual_time = residual_time
|
|
else:
|
|
pred_time = np.concatenate(
|
|
(
|
|
np.multiply(pred_time[0 : int(overlapsize)], window_left),
|
|
pred_time[int(overlapsize) : int(segment_size)],
|
|
),
|
|
axis=0,
|
|
)
|
|
residual_time = np.concatenate(
|
|
(
|
|
np.multiply(residual_time[0 : int(overlapsize)], window_left),
|
|
residual_time[int(overlapsize) : int(segment_size)],
|
|
),
|
|
axis=0,
|
|
)
|
|
|
|
denoised_data[pointer::] = (
|
|
denoised_data[pointer::] + pred_time[0:lensegment]
|
|
)
|
|
residual_noise[pointer::] = (
|
|
residual_noise[pointer::] + residual_time[0:lensegment]
|
|
)
|
|
|
|
basename = os.path.splitext(audio)[0]
|
|
wav_noisy_name = basename + "_noisy_input" + ".wav"
|
|
sf.write(wav_noisy_name, data, 44100)
|
|
wav_output_name = basename + "_denoised" + ".wav"
|
|
sf.write(wav_output_name, denoised_data, 44100)
|
|
wav_output_name = basename + "_residual" + ".wav"
|
|
sf.write(wav_output_name, residual_noise, 44100)
|
|
|
|
|
|
def _main(args):
|
|
global __file__
|
|
|
|
__file__ = hydra.utils.to_absolute_path(__file__)
|
|
|
|
run(args)
|
|
|
|
|
|
@hydra.main(config_path="conf/conf.yaml")
|
|
def main(args):
|
|
try:
|
|
_main(args)
|
|
except Exception:
|
|
logger.exception("Some error happened")
|
|
# Hydra intercepts exit code, fixed in beta but I could not get the beta to work
|
|
os._exit(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|