Go to file
eloimoliner f0caa83cd5
Update README.md
hth
2021-08-31 15:50:23 +03:00
conf removing test 2021-08-31 11:16:16 +03:00
experiments/trained_model uploading even more shit 2021-08-30 18:43:40 +03:00
dataset_loader.py dding neviroment 2021-08-31 15:36:06 +03:00
environment.yml dding neviroment 2021-08-31 15:36:06 +03:00
inference.py dding neviroment 2021-08-31 15:36:06 +03:00
inference.sh preparing files 2021-08-31 15:41:56 +03:00
README.md Update README.md 2021-08-31 15:50:23 +03:00
requirements.txt dding neviroment 2021-08-31 15:36:06 +03:00
train.py dding neviroment 2021-08-31 15:36:06 +03:00
train.sh preparing files 2021-08-31 15:41:56 +03:00
trainer.py dding neviroment 2021-08-31 15:36:06 +03:00
unet.py startin again 2021-08-30 18:30:51 +03:00

A two-stage U-Net for high-fidelity denoising of historical recordings

Official repository of the paper:

E. Moliner and V. Välimäki,, "A two-stage U-Net for high-fidelity denosing of historical recordinds", in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Singapore, May, 2022

Abstract

abstract here

Schema represention

Requirements

You will need at least python 3.7. See ´requirements.txt´ for the required package versions.

To install the environment through anaconda, follow the instructions:

conda env update -f environment.yml
conda activate historical_denoiser

Denosing Recordings

Training