Compare commits

...

10 Commits

Author SHA1 Message Date
9870240572 fix formatting & linters 2025-05-08 12:56:32 +03:00
Eloi Moliner Juanpere
114fce7c84
Merge pull request #6 from JorenSix/patch-1
Update inference.sh
2022-06-29 17:50:42 +03:00
Joren Six
1fe1988ed5
Update inference.sh
Small change to allow spaces in file names. Bash expands the variable $1 correctly even if it is in double quotes, python receives a single argument and not (if there are spaces) multiple arguments.
2022-06-29 09:58:53 +02:00
Eloi Moliner Juanpere
fb7a32a1ff
Update README.md 2022-05-05 10:47:26 +03:00
Eloi Moliner Juanpere
b7d071a54c
Update README.md 2022-01-24 10:08:01 +02:00
Eloi Moliner Juanpere
6eb46ba2fc
Update README.md 2022-01-24 10:07:24 +02:00
Eloi Moliner Juanpere
018f4418e6
Update README.md 2022-01-24 10:06:15 +02:00
Eloi Moliner Juanpere
a1a92afefd Created using Colaboratory 2022-01-24 10:00:03 +02:00
Eloi Moliner Juanpere
214c872c51
Update README.md 2022-01-22 12:14:07 +02:00
Eloi Moliner Juanpere
210cd0edd8
Update README.md 2022-01-22 12:11:40 +02:00
9 changed files with 1163 additions and 914 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
experiments
outputs
__pycache__

View File

@ -13,7 +13,7 @@ width="400px"></p>
Listen to our [audio samples](http://research.spa.aalto.fi/publications/papers/icassp22-denoising/)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eloimoliner/denoising-historical-recordings/blob/colab/colab/demo.ipynb]
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eloimoliner/denoising-historical-recordings/blob/master/colab/demo.ipynb)
## Requirements
You will need at least python 3.7 and CUDA 10.1 if you want to use GPU. See `requirements.txt` for the required package versions.
@ -24,7 +24,10 @@ To install the environment through anaconda, follow the instructions:
conda activate historical_denoiser
## Denoising Recordings
Run the following commands to clone the repository and install the pretrained weights of the two-stage U-Net model:
You can denoise your recordings in the cloud using the Colab notebook. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eloimoliner/denoising-historical-recordings/blob/master/colab/demo.ipynb)
Otherwise, run the following commands to clone the repository and install the pretrained weights of the two-stage U-Net model:
git clone https://github.com/eloimoliner/denoising-historical-recordings.git
cd denoising-historical-recordings
@ -37,7 +40,13 @@ If the environment is installed correctly, you can denoise an audio file by runn
A ".wav" file with the denoised version, as well as the residual noise and the original signal in "mono", will be generated in the same directory as the input file.
## Training
TODO
To retrain the model, follow the instructions:
Download the [Gramophone Noise Dataset](http://research.spa.aalto.fi/publications/papers/icassp22-denoising/media/datasets/Gramophone_Record_Noise_Dataset.zip), or any other dataset containing recording noises.
Prepare a dataset of clean music (e.g. [MusicNet](https://zenodo.org/record/5120004#.YnN-96IzbmE))
## Remarks
The trained model is specialized in denoising gramophone recordings, such as the ones included in this collection https://archive.org/details/georgeblood. It has shown to be robust to a wide range of different noises, but it may produce some artifacts if you try to inference in something completely different.

View File

@ -7,7 +7,7 @@
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/eloimoliner/denoising-historical-recordings/blob/colab/colab/demo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
"<a href=\"https://colab.research.google.com/github/eloimoliner/denoising-historical-recordings/blob/master/colab/demo.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
@ -40,7 +40,8 @@
"* Make sure to use a GPU runtime, click: __Runtime >> Change Runtime Type >> GPU__\n",
"* Press ▶️ on the left of each of the cells\n",
"* View the code: Double-click any of the cells\n",
"* Hide the code: Double click the right side of the cell\n"
"* Hide the code: Double click the right side of the cell\n",
"* For some reason, this notebook does not work in Firefox, so please use another browser.\n"
],
"metadata": {
"id": "8UON6ncSApA9"
@ -207,7 +208,7 @@
"id": "TQBDTmO4mUBx"
},
"id": "TQBDTmO4mUBx",
"execution_count": 4,
"execution_count": null,
"outputs": []
},
{
@ -243,7 +244,7 @@
"outputId": "2d05860c-536d-45f8-92b4-d2ba6f5a54c5"
},
"id": "50Kmdy6AtbhW",
"execution_count": 5,
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
@ -296,7 +297,7 @@
"outputId": "173f5355-2939-41fe-c702-591aa752fc7e"
},
"id": "0po6zpvrylc2",
"execution_count": 6,
"execution_count": null,
"outputs": [
{
"output_type": "stream",
@ -333,7 +334,7 @@
"outputId": "54588c26-0b3c-42bf-aca2-8316ab54603f"
},
"id": "3tEshWBezYvf",
"execution_count": 7,
"execution_count": null,
"outputs": [
{
"output_type": "display_data",

View File

@ -4,485 +4,561 @@ import tensorflow as tf
import random
import os
import numpy as np
from scipy.fft import fft, ifft
import soundfile as sf
import math
import pandas as pd
import scipy as sp
import glob
from tqdm import tqdm
#generator function. It reads the csv file with pandas and loads the largest audio segments from each recording. If extend=False, it will only read the segments with length>length_seg, trim them and yield them with no further processing. Otherwise, if the segment length is inferior, it will extend the length using concatenative synthesis.
def __noise_sample_generator(info_file,fs, length_seq, split):
head=os.path.split(info_file)[0]
load_data=pd.read_csv(info_file)
#split= train, validation, test
load_data_split=load_data.loc[load_data["split"]==split]
load_data_split=load_data_split.reset_index(drop=True)
# generator function. It reads the csv file with pandas and loads the largest audio segments from each recording. If extend=False, it will only read the segments with length>length_seg, trim them and yield them with no further processing. Otherwise, if the segment length is inferior, it will extend the length using concatenative synthesis.
def __noise_sample_generator(info_file, fs, length_seq, split):
head = os.path.split(info_file)[0]
load_data = pd.read_csv(info_file)
# split= train, validation, test
load_data_split = load_data.loc[load_data["split"] == split]
load_data_split = load_data_split.reset_index(drop=True)
while True:
r = list(range(len(load_data_split)))
if split!="test":
if split != "test":
random.shuffle(r)
for i in r:
segments=ast.literal_eval(load_data_split.loc[i,"segments"])
if split=="test":
loaded_data, Fs=sf.read(os.path.join(head,load_data_split["recording"].loc[i],load_data_split["largest_segment"].loc[i]))
segments = ast.literal_eval(load_data_split.loc[i, "segments"])
if split == "test":
loaded_data, Fs = sf.read(
os.path.join(
head,
load_data_split["recording"].loc[i],
load_data_split["largest_segment"].loc[i],
)
)
else:
num=np.random.randint(0,len(segments))
loaded_data, Fs=sf.read(os.path.join(head,load_data_split["recording"].loc[i],segments[num]))
assert(fs==Fs, "wrong sampling rate")
num = np.random.randint(0, len(segments))
loaded_data, Fs = sf.read(
os.path.join(
head, load_data_split["recording"].loc[i], segments[num]
)
)
assert fs == Fs, "wrong sampling rate"
yield __extend_sample_by_repeating(loaded_data,fs,length_seq)
yield __extend_sample_by_repeating(loaded_data, fs, length_seq)
def __extend_sample_by_repeating(data, fs,seq_len):
rpm=78
target_samp=seq_len
large_data=np.zeros(shape=(target_samp,2))
if len(data)>=target_samp:
large_data=data[0:target_samp]
def __extend_sample_by_repeating(data, fs, seq_len):
rpm = 78
target_samp = seq_len
large_data = np.zeros(shape=(target_samp, 2))
if len(data) >= target_samp:
large_data = data[0:target_samp]
return large_data
bls=(1000*44100)/1000 #hardcoded
bls = (1000 * 44100) / 1000 # hardcoded
window=np.stack((np.hanning(bls) ,np.hanning(bls)), axis=1)
window_left=window[0:int(bls/2),:]
window_right=window[int(bls/2)::,:]
bls=int(bls/2)
window = np.stack((np.hanning(bls), np.hanning(bls)), axis=1)
window_left = window[0 : int(bls / 2), :]
window_right = window[int(bls / 2) : :, :]
bls = int(bls / 2)
rps=rpm/60
period=1/rps
rps = rpm / 60
period = 1 / rps
period_sam=int(period*fs)
period_sam = int(period * fs)
overhead=len(data)%period_sam
overhead = len(data) % period_sam
if(overhead>bls):
complete_periods=(len(data)//period_sam)*period_sam
if overhead > bls:
complete_periods = (len(data) // period_sam) * period_sam
else:
complete_periods=(len(data)//period_sam -1)*period_sam
complete_periods = (len(data) // period_sam - 1) * period_sam
a = np.multiply(data[0:bls], window_left)
b = np.multiply(data[complete_periods : complete_periods + bls], window_right)
c_1 = np.concatenate((data[0:complete_periods, :], b))
c_2 = np.concatenate((a, data[bls:complete_periods, :], b))
c_3 = np.concatenate((a, data[bls::, :]))
a=np.multiply(data[0:bls], window_left)
b=np.multiply(data[complete_periods:complete_periods+bls], window_right)
c_1=np.concatenate((data[0:complete_periods,:],b))
c_2=np.concatenate((a,data[bls:complete_periods,:],b))
c_3=np.concatenate((a,data[bls::,:]))
large_data[0 : complete_periods + bls, :] = c_1
large_data[0:complete_periods+bls,:]=c_1
pointer=complete_periods
not_finished=True
while (not_finished):
if target_samp>pointer+complete_periods+bls:
large_data[pointer:pointer+complete_periods+bls] +=c_2
pointer+=complete_periods
pointer = complete_periods
not_finished = True
while not_finished:
if target_samp > pointer + complete_periods + bls:
large_data[pointer : pointer + complete_periods + bls] += c_2
pointer += complete_periods
else:
large_data[pointer::]+=c_3[0:(target_samp-pointer)]
#finish
not_finished=False
large_data[pointer::] += c_3[0 : (target_samp - pointer)]
# finish
not_finished = False
return large_data
def generate_real_recordings_data(path_recordings, fs=44100, seg_len_s=15, stereo=False):
records_info=os.path.join(path_recordings,"audio_files.txt")
def generate_real_recordings_data(
path_recordings, fs=44100, seg_len_s=15, stereo=False
):
records_info = os.path.join(path_recordings, "audio_files.txt")
num_lines = sum(1 for line in open(records_info))
f = open(records_info,"r")
#load data record files
f = open(records_info, "r")
# load data record files
print("Loading record files")
records=[]
seg_len=fs*seg_len_s
pointer=int(fs*5) #starting at second 5 by default
records = []
seg_len = fs * seg_len_s
pointer = int(fs * 5) # starting at second 5 by default
for i in tqdm(range(num_lines)):
audio=f.readline()
audio=audio[:-1]
data, fs=sf.read(os.path.join(path_recordings,audio))
if len(data.shape)>1 and not(stereo):
data=np.mean(data,axis=1)
#elif stereo and len(data.shape)==1:
audio = f.readline()
audio = audio[:-1]
data, fs = sf.read(os.path.join(path_recordings, audio))
if len(data.shape) > 1 and not (stereo):
data = np.mean(data, axis=1)
# elif stereo and len(data.shape)==1:
# data=np.stack((data, data), axis=1)
#normalize
data=data/np.max(np.abs(data))
segment=data[pointer:pointer+seg_len]
# normalize
data = data / np.max(np.abs(data))
segment = data[pointer : pointer + seg_len]
records.append(segment.astype("float32"))
return records
def generate_paired_data_test_formal(path_pianos, path_noises, noise_amount="low_snr",num_samples=-1, fs=44100, seg_len_s=5 , extend=True, stereo=False, prenoise=False):
def generate_paired_data_test_formal(
path_pianos,
path_noises,
noise_amount="low_snr",
num_samples=-1,
fs=44100,
seg_len_s=5,
extend=True,
stereo=False,
prenoise=False,
):
print(num_samples)
segments_clean=[]
segments_noisy=[]
seg_len=fs*seg_len_s
noises_info=os.path.join(path_noises,"info.csv")
segments_clean = []
segments_noisy = []
seg_len = fs * seg_len_s
noises_info = os.path.join(path_noises, "info.csv")
np.random.seed(42)
if noise_amount=="low_snr":
SNRs=np.random.uniform(2,6,num_samples)
elif noise_amount=="mid_snr":
SNRs=np.random.uniform(6,12,num_samples)
if noise_amount == "low_snr":
SNRs = np.random.uniform(2, 6, num_samples)
elif noise_amount == "mid_snr":
SNRs = np.random.uniform(6, 12, num_samples)
scales=np.random.uniform(-4,0,num_samples)
#SNRs=[2,6,12] #HARDCODED!!!!
i=0
scales = np.random.uniform(-4, 0, num_samples)
# SNRs=[2,6,12] #HARDCODED!!!!
i = 0
print(path_pianos[0])
print(seg_len)
train_samples=glob.glob(os.path.join(path_pianos[0],"*.wav"))
train_samples=sorted(train_samples)
train_samples = glob.glob(os.path.join(path_pianos[0], "*.wav"))
train_samples = sorted(train_samples)
if prenoise:
noise_generator=__noise_sample_generator(noises_info,fs, seg_len+fs, extend, "test") #Adds 1s of silence add the begiing, longer noise
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len + fs, extend, "test"
) # Adds 1s of silence add the begiing, longer noise
else:
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, extend, "test") #this will take care of everything
#load data clean files
for file in tqdm(train_samples): #add [1:5] for testing
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, extend, "test"
) # this will take care of everything
# load data clean files
for file in tqdm(train_samples): # add [1:5] for testing
data_clean, samplerate = sf.read(file)
if samplerate!=fs:
if samplerate != fs:
print("!!!!WRONG SAMPLE RATe!!!")
#Stereo to mono
if len(data_clean.shape)>1 and not(stereo):
data_clean=np.mean(data_clean,axis=1)
#elif stereo and len(data_clean.shape)==1:
# Stereo to mono
if len(data_clean.shape) > 1 and not (stereo):
data_clean = np.mean(data_clean, axis=1)
# elif stereo and len(data_clean.shape)==1:
# data_clean=np.stack((data_clean, data_clean), axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
#data_clean_loaded.append(data_clean)
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
# data_clean_loaded.append(data_clean)
#framify data clean files
# framify data clean files
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)# no overlap
# framify arguments: seg_len, hop_size
hop_size = int(seg_len) # no overlap
num_frames=np.floor(len(data_clean)/hop_size - seg_len/hop_size +1)
num_frames = np.floor(len(data_clean) / hop_size - seg_len / hop_size + 1)
print(num_frames)
if num_frames==0:
data_clean=np.concatenate((data_clean, np.zeros(shape=(int(2*seg_len-len(data_clean)),))), axis=0)
num_frames=1
if num_frames == 0:
data_clean = np.concatenate(
(data_clean, np.zeros(shape=(int(2 * seg_len - len(data_clean)),))),
axis=0,
)
num_frames = 1
data_not_finished=True
pointer=0
while(data_not_finished):
if i>=num_samples:
data_not_finished = True
pointer = 0
while data_not_finished:
if i >= num_samples:
break
segment=data_clean[pointer:pointer+seg_len]
pointer=pointer+hop_size
if pointer+seg_len>len(data_clean):
data_not_finished=False
segment=segment.astype('float32')
segment = data_clean[pointer : pointer + seg_len]
pointer = pointer + hop_size
if pointer + seg_len > len(data_clean):
data_not_finished = False
segment = segment.astype("float32")
#SNRs=np.random.uniform(2,20)
snr=SNRs[i]
scale=scales[i]
#load noise signal
data_noise= next(noise_generator)
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
#configure sizes
power_clean=np.var(segment)
#estimate noise power
# SNRs=np.random.uniform(2,20)
snr = SNRs[i]
scale = scales[i]
# load noise signal
data_noise = next(noise_generator)
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
# configure sizes
power_clean = np.var(segment)
# estimate noise power
if prenoise:
power_noise=np.var(new_noise[fs::])
power_noise = np.var(new_noise[fs::])
else:
power_noise=np.var(new_noise)
power_noise = np.var(new_noise)
snr = 10.0**(snr/10.0)
snr = 10.0 ** (snr / 10.0)
#sum both signals according to snr
# sum both signals according to snr
if prenoise:
segment=np.concatenate((np.zeros(shape=(fs,)),segment),axis=0) #add one second of silence
summed=segment+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
segment = np.concatenate(
(np.zeros(shape=(fs,)), segment), axis=0
) # add one second of silence
summed = (
segment + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
summed=summed.astype('float32')
#yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
summed = summed.astype("float32")
# yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
summed=10.0**(scale/10.0) *summed
segment=10.0**(scale/10.0) *segment
segments_noisy.append(summed.astype('float32'))
segments_clean.append(segment.astype('float32'))
i=i+1
summed = 10.0 ** (scale / 10.0) * summed
segment = 10.0 ** (scale / 10.0) * segment
segments_noisy.append(summed.astype("float32"))
segments_clean.append(segment.astype("float32"))
i = i + 1
return segments_noisy, segments_clean
def generate_test_data(path_music, path_noises,num_samples=-1, fs=44100, seg_len_s=5):
segments_clean=[]
segments_noisy=[]
seg_len=fs*seg_len_s
noises_info=os.path.join(path_noises,"info.csv")
SNRs=[2,6,12] #HARDCODED!!!!
def generate_test_data(path_music, path_noises, num_samples=-1, fs=44100, seg_len_s=5):
segments_clean = []
segments_noisy = []
seg_len = fs * seg_len_s
noises_info = os.path.join(path_noises, "info.csv")
SNRs = [2, 6, 12] # HARDCODED!!!!
for path in path_music:
print(path)
train_samples=glob.glob(os.path.join(path,"*.wav"))
train_samples=sorted(train_samples)
train_samples = glob.glob(os.path.join(path, "*.wav"))
train_samples = sorted(train_samples)
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, "test") #this will take care of everything
#load data clean files
jj=0
for file in tqdm(train_samples): #add [1:5] for testing
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, "test"
) # this will take care of everything
# load data clean files
for file in tqdm(train_samples): # add [1:5] for testing
data_clean, samplerate = sf.read(file)
if samplerate!=fs:
if samplerate != fs:
print("!!!!WRONG SAMPLE RATe!!!")
#Stereo to mono
if len(data_clean.shape)>1:
data_clean=np.mean(data_clean,axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
#data_clean_loaded.append(data_clean)
# Stereo to mono
if len(data_clean.shape) > 1:
data_clean = np.mean(data_clean, axis=1)
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
# data_clean_loaded.append(data_clean)
#framify data clean files
# framify data clean files
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)# no overlap
# framify arguments: seg_len, hop_size
hop_size = int(seg_len) # no overlap
num_frames=np.floor(len(data_clean)/hop_size - seg_len/hop_size +1)
if num_frames==0:
data_clean=np.concatenate((data_clean, np.zeros(shape=(int(2*seg_len-len(data_clean)),))), axis=0)
num_frames=1
num_frames = np.floor(len(data_clean) / hop_size - seg_len / hop_size + 1)
if num_frames == 0:
data_clean = np.concatenate(
(data_clean, np.zeros(shape=(int(2 * seg_len - len(data_clean)),))),
axis=0,
)
num_frames = 1
pointer=0
segment=data_clean[pointer:pointer+(seg_len-2*fs)]
segment=segment.astype('float32')
segment=np.concatenate(( np.zeros(shape=(2*fs,)), segment), axis=0) #I hope its ok
#segments_clean.append(segment)
pointer = 0
segment = data_clean[pointer : pointer + (seg_len - 2 * fs)]
segment = segment.astype("float32")
segment = np.concatenate(
(np.zeros(shape=(2 * fs,)), segment), axis=0
) # I hope its ok
# segments_clean.append(segment)
for snr in SNRs:
#load noise signal
data_noise= next(noise_generator)
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
#configure sizes
#estimate clean signal power
power_clean=np.var(segment)
#estimate noise power
power_noise=np.var(new_noise)
# load noise signal
data_noise = next(noise_generator)
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
# configure sizes
# estimate clean signal power
power_clean = np.var(segment)
# estimate noise power
power_noise = np.var(new_noise)
snr = 10.0**(snr/10.0)
snr = 10.0 ** (snr / 10.0)
#sum both signals according to snr
summed=segment+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
summed=summed.astype('float32')
#yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
# sum both signals according to snr
summed = (
segment + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
summed = summed.astype("float32")
# yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
segments_noisy.append(summed.astype('float32'))
segments_clean.append(segment.astype('float32'))
segments_noisy.append(summed.astype("float32"))
segments_clean.append(segment.astype("float32"))
return segments_noisy, segments_clean
def generate_val_data(path_music, path_noises,split,num_samples=-1, fs=44100, seg_len_s=5):
val_samples=[]
def generate_val_data(
path_music, path_noises, split, num_samples=-1, fs=44100, seg_len_s=5
):
val_samples = []
for path in path_music:
val_samples.extend(glob.glob(os.path.join(path,"*.wav")))
val_samples.extend(glob.glob(os.path.join(path, "*.wav")))
#load data clean files
# load data clean files
print("Loading clean files")
data_clean_loaded=[]
for ff in tqdm(range(0,len(val_samples))): #add [1:5] for testing
data_clean_loaded = []
for ff in tqdm(range(0, len(val_samples))): # add [1:5] for testing
data_clean, samplerate = sf.read(val_samples[ff])
if samplerate!=fs:
if samplerate != fs:
print("!!!!WRONG SAMPLE RATe!!!")
#Stereo to mono
if len(data_clean.shape)>1 :
data_clean=np.mean(data_clean,axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
# Stereo to mono
if len(data_clean.shape) > 1:
data_clean = np.mean(data_clean, axis=1)
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
data_clean_loaded.append(data_clean)
del data_clean
#framify data clean files
# framify data clean files
print("Framifying clean files")
seg_len=fs*seg_len_s
segments_clean=[]
seg_len = fs * seg_len_s
segments_clean = []
for file in tqdm(data_clean_loaded):
# framify arguments: seg_len, hop_size
hop_size = int(seg_len) # no overlap
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)# no overlap
num_frames=np.floor(len(file)/hop_size - seg_len/hop_size +1)
pointer=0
for i in range(0,int(num_frames)):
segment=file[pointer:pointer+seg_len]
pointer=pointer+hop_size
segment=segment.astype('float32')
num_frames = np.floor(len(file) / hop_size - seg_len / hop_size + 1)
pointer = 0
for i in range(0, int(num_frames)):
segment = file[pointer : pointer + seg_len]
pointer = pointer + hop_size
segment = segment.astype("float32")
segments_clean.append(segment)
del data_clean_loaded
SNRs=np.random.uniform(2,20,len(segments_clean))
scales=np.random.uniform(-6,4,len(segments_clean))
#noise_shapes=np.random.randint(0,len(noise_samples), len(segments_clean))
noises_info=os.path.join(path_noises,"info.csv")
SNRs = np.random.uniform(2, 20, len(segments_clean))
scales = np.random.uniform(-6, 4, len(segments_clean))
# noise_shapes=np.random.randint(0,len(noise_samples), len(segments_clean))
noises_info = os.path.join(path_noises, "info.csv")
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, split) #this will take care of everything
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, split
) # this will take care of everything
# generate noisy segments
# load noise samples using pandas dataframe. Each split (train, val, test) should have its unique csv info file
#generate noisy segments
#load noise samples using pandas dataframe. Each split (train, val, test) should have its unique csv info file
#noise_samples=glob.glob(os.path.join(path_noises,"*.wav"))
segments_noisy=[]
# noise_samples=glob.glob(os.path.join(path_noises,"*.wav"))
segments_noisy = []
print("Processing noisy segments")
for i in tqdm(range(0,len(segments_clean))):
#load noise signal
data_noise= next(noise_generator)
#Stereo to mono
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
data_clean=segments_clean[i]
#configure sizes
for i in tqdm(range(0, len(segments_clean))):
# load noise signal
data_noise = next(noise_generator)
# Stereo to mono
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
data_clean = segments_clean[i]
# configure sizes
# estimate clean signal power
power_clean = np.var(data_clean)
# estimate noise power
power_noise = np.var(new_noise)
#estimate clean signal power
power_clean=np.var(data_clean)
#estimate noise power
power_noise=np.var(new_noise)
snr = 10.0 ** (SNRs[i] / 10.0)
snr = 10.0**(SNRs[i]/10.0)
# sum both signals according to snr
summed = (
data_clean + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
# the rest is normal
#sum both signals according to snr
summed=data_clean+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
#the rest is normal
summed = 10.0 ** (scales[i] / 10.0) * summed
segments_clean[i] = 10.0 ** (scales[i] / 10.0) * segments_clean[i]
summed=10.0**(scales[i]/10.0) *summed
segments_clean[i]=10.0**(scales[i]/10.0) *segments_clean[i]
segments_noisy.append(summed.astype('float32'))
segments_noisy.append(summed.astype("float32"))
return segments_noisy, segments_clean
def generator_train(path_music, path_noises,split, fs=44100, seg_len_s=5, extend=True, stereo=False):
train_samples=[]
def generator_train(
path_music, path_noises, split, fs=44100, seg_len_s=5, extend=True, stereo=False
):
train_samples = []
for path in path_music:
train_samples.extend(glob.glob(os.path.join(path.decode("utf-8") ,"*.wav")))
train_samples.extend(glob.glob(os.path.join(path.decode("utf-8"), "*.wav")))
seg_len=fs*seg_len_s
noises_info=os.path.join(path_noises.decode("utf-8"),"info.csv")
noise_generator=__noise_sample_generator(noises_info,fs, seg_len, split.decode("utf-8")) #this will take care of everything
#load data clean files
seg_len = fs * seg_len_s
noises_info = os.path.join(path_noises.decode("utf-8"), "info.csv")
noise_generator = __noise_sample_generator(
noises_info, fs, seg_len, split.decode("utf-8")
) # this will take care of everything
# load data clean files
while True:
random.shuffle(train_samples)
for file in train_samples:
data, samplerate = sf.read(file)
assert(samplerate==fs, "wrong sampling rate")
data_clean=data
#Stereo to mono
if len(data.shape)>1 :
data_clean=np.mean(data_clean,axis=1)
assert samplerate == fs, "wrong sampling rate"
data_clean = data
# Stereo to mono
if len(data.shape) > 1:
data_clean = np.mean(data_clean, axis=1)
#normalize
data_clean=data_clean/np.max(np.abs(data_clean))
# normalize
data_clean = data_clean / np.max(np.abs(data_clean))
#framify data clean files
# framify data clean files
#framify arguments: seg_len, hop_size
hop_size=int(seg_len)
# framify arguments: seg_len, hop_size
hop_size = int(seg_len)
num_frames=np.floor(len(data_clean)/seg_len)
if num_frames==0:
data_clean=np.concatenate((data_clean, np.zeros(shape=(int(2*seg_len-len(data_clean)),))), axis=0)
num_frames=1
pointer=0
data_clean=np.roll(data_clean, np.random.randint(0,seg_len)) #if only one frame, roll it for augmentation
elif num_frames>1:
pointer=np.random.randint(0,hop_size) #initial shifting, graeat for augmentation, better than overlap as we get different frames at each "while" iteration
num_frames = np.floor(len(data_clean) / seg_len)
if num_frames == 0:
data_clean = np.concatenate(
(data_clean, np.zeros(shape=(int(2 * seg_len - len(data_clean)),))),
axis=0,
)
num_frames = 1
pointer = 0
data_clean = np.roll(
data_clean, np.random.randint(0, seg_len)
) # if only one frame, roll it for augmentation
elif num_frames > 1:
pointer = np.random.randint(
0, hop_size
) # initial shifting, graeat for augmentation, better than overlap as we get different frames at each "while" iteration
else:
pointer=0
pointer = 0
data_not_finished=True
while(data_not_finished):
segment=data_clean[pointer:pointer+seg_len]
pointer=pointer+hop_size
if pointer+seg_len>len(data_clean):
data_not_finished=False
segment=segment.astype('float32')
data_not_finished = True
while data_not_finished:
segment = data_clean[pointer : pointer + seg_len]
pointer = pointer + hop_size
if pointer + seg_len > len(data_clean):
data_not_finished = False
segment = segment.astype("float32")
SNRs=np.random.uniform(2,20)
scale=np.random.uniform(-6,4)
SNRs = np.random.uniform(2, 20)
scale = np.random.uniform(-6, 4)
#load noise signal
data_noise= next(noise_generator)
data_noise=np.mean(data_noise,axis=1)
#normalize
data_noise=data_noise/np.max(np.abs(data_noise))
new_noise=data_noise #if more processing needed, add here
#load clean data
#configure sizes
# load noise signal
data_noise = next(noise_generator)
data_noise = np.mean(data_noise, axis=1)
# normalize
data_noise = data_noise / np.max(np.abs(data_noise))
new_noise = data_noise # if more processing needed, add here
# load clean data
# configure sizes
if stereo:
#estimate clean signal power
power_clean=0.5*np.var(segment[:,0])+0.5*np.var(segment[:,1])
#estimate noise power
power_noise=0.5*np.var(new_noise[:,0])+0.5*np.var(new_noise[:,1])
# estimate clean signal power
power_clean = 0.5 * np.var(segment[:, 0]) + 0.5 * np.var(
segment[:, 1]
)
# estimate noise power
power_noise = 0.5 * np.var(new_noise[:, 0]) + 0.5 * np.var(
new_noise[:, 1]
)
else:
#estimate clean signal power
power_clean=np.var(segment)
#estimate noise power
power_noise=np.var(new_noise)
# estimate clean signal power
power_clean = np.var(segment)
# estimate noise power
power_noise = np.var(new_noise)
snr = 10.0**(SNRs/10.0)
snr = 10.0 ** (SNRs / 10.0)
# sum both signals according to snr
summed = (
segment + np.sqrt(power_clean / (snr * power_noise)) * new_noise
) # not sure if this is correct, maybe revisit later!!
summed = 10.0 ** (scale / 10.0) * summed
segment = 10.0 ** (scale / 10.0) * segment
#sum both signals according to snr
summed=segment+np.sqrt(power_clean/(snr*power_noise))*new_noise #not sure if this is correct, maybe revisit later!!
summed=10.0**(scale/10.0) *summed
segment=10.0**(scale/10.0) *segment
summed=summed.astype('float32')
summed = summed.astype("float32")
yield tf.convert_to_tensor(summed), tf.convert_to_tensor(segment)
def load_data(buffer_size, path_music_train, path_music_val, path_noises, fs=44100, seg_len_s=5, extend=True, stereo=False) :
def load_data(
buffer_size,
path_music_train,
path_music_val,
path_noises,
fs=44100,
seg_len_s=5,
extend=True,
stereo=False,
):
print("Generating train dataset")
trainshape=int(fs*seg_len_s)
dataset_train = tf.data.Dataset.from_generator(generator_train,args=(path_music_train, path_noises,"train", fs, seg_len_s, extend, stereo), output_shapes=(tf.TensorShape((trainshape,)),tf.TensorShape((trainshape,))), output_types=(tf.float32, tf.float32) )
trainshape = int(fs * seg_len_s)
dataset_train = tf.data.Dataset.from_generator(
generator_train,
args=(path_music_train, path_noises, "train", fs, seg_len_s, extend, stereo),
output_shapes=(tf.TensorShape((trainshape,)), tf.TensorShape((trainshape,))),
output_types=(tf.float32, tf.float32),
)
print("Generating validation dataset")
segments_noisy, segments_clean=generate_val_data(path_music_val, path_noises,"validation",fs=fs, seg_len_s=seg_len_s)
segments_noisy, segments_clean = generate_val_data(
path_music_val, path_noises, "validation", fs=fs, seg_len_s=seg_len_s
)
dataset_val=tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
dataset_val = tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
return dataset_train.shuffle(buffer_size), dataset_val
def load_data_test(buffer_size, path_pianos_test, path_noises, **kwargs):
print("Generating test dataset")
segments_noisy, segments_clean=generate_test_data(path_pianos_test, path_noises, extend=True, **kwargs)
dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
#dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
#train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
segments_noisy, segments_clean = generate_test_data(
path_pianos_test, path_noises, extend=True, **kwargs
)
dataset_test = tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
# dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
# train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test
def load_data_formal( path_pianos_test, path_noises, **kwargs) :
def load_data_formal(path_pianos_test, path_noises, **kwargs):
print("Generating test dataset")
segments_noisy, segments_clean=generate_paired_data_test_formal(path_pianos_test, path_noises, extend=True, **kwargs)
segments_noisy, segments_clean = generate_paired_data_test_formal(
path_pianos_test, path_noises, extend=True, **kwargs
)
print("segments::")
print(len(segments_noisy))
dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
#dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
#train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
dataset_test = tf.data.Dataset.from_tensor_slices((segments_noisy, segments_clean))
# dataset_test=tf.data.Dataset.from_tensor_slices((segments_noisy[1:3], segments_clean[1:3]))
# train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test
def load_real_test_recordings(buffer_size, path_recordings, **kwargs):
print("Generating real test dataset")
segments_noisy=generate_real_recordings_data(path_recordings, **kwargs)
segments_noisy = generate_real_recordings_data(path_recordings, **kwargs)
dataset_test=tf.data.Dataset.from_tensor_slices(segments_noisy)
#train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
dataset_test = tf.data.Dataset.from_tensor_slices(segments_noisy)
# train_dataset = train.cache().shuffle(buffer_size).take(info.splits["train"].num_examples)
return dataset_test

View File

@ -4,6 +4,7 @@ import logging
logger = logging.getLogger(__name__)
def run(args):
import unet
import tensorflow as tf
@ -12,127 +13,203 @@ def run(args):
from tqdm import tqdm
import scipy.signal
path_experiment=str(args.path_experiment)
path_experiment = str(args.path_experiment)
unet_model = unet.build_model_denoise(unet_args=args.unet)
ckpt=os.path.join(os.path.dirname(os.path.abspath(__file__)),path_experiment, 'checkpoint')
ckpt = os.path.join(
os.path.dirname(os.path.abspath(__file__)), path_experiment, "checkpoint"
)
unet_model.load_weights(ckpt)
def do_stft(noisy):
window_fn = tf.signal.hamming_window
win_size=args.stft.win_size
hop_size=args.stft.hop_size
win_size = args.stft.win_size
hop_size = args.stft.hop_size
stft_signal_noisy=tf.signal.stft(noisy,frame_length=win_size, window_fn=window_fn, frame_step=hop_size, pad_end=True)
stft_noisy_stacked=tf.stack( values=[tf.math.real(stft_signal_noisy), tf.math.imag(stft_signal_noisy)], axis=-1)
stft_signal_noisy = tf.signal.stft(
noisy,
frame_length=win_size,
window_fn=window_fn,
frame_step=hop_size,
pad_end=True,
)
stft_noisy_stacked = tf.stack(
values=[tf.math.real(stft_signal_noisy), tf.math.imag(stft_signal_noisy)],
axis=-1,
)
return stft_noisy_stacked
def do_istft(data):
window_fn = tf.signal.hamming_window
win_size=args.stft.win_size
hop_size=args.stft.hop_size
win_size = args.stft.win_size
hop_size = args.stft.hop_size
inv_window_fn=tf.signal.inverse_stft_window_fn(hop_size, forward_window_fn=window_fn)
inv_window_fn = tf.signal.inverse_stft_window_fn(
hop_size, forward_window_fn=window_fn
)
pred_cpx=data[...,0] + 1j * data[...,1]
pred_time=tf.signal.inverse_stft(pred_cpx, win_size, hop_size, window_fn=inv_window_fn)
pred_cpx = data[..., 0] + 1j * data[..., 1]
pred_time = tf.signal.inverse_stft(
pred_cpx, win_size, hop_size, window_fn=inv_window_fn
)
return pred_time
audio=str(args.inference.audio)
audio = str(args.inference.audio)
data, samplerate = sf.read(audio)
print(data.dtype)
#Stereo to mono
if len(data.shape)>1:
data=np.mean(data,axis=1)
# Stereo to mono
if len(data.shape) > 1:
data = np.mean(data, axis=1)
if samplerate!=44100:
if samplerate != 44100:
print("Resampling")
data=scipy.signal.resample(data, int((44100 / samplerate )*len(data))+1)
data = scipy.signal.resample(data, int((44100 / samplerate) * len(data)) + 1)
segment_size = 44100 * 5 # 20s segments
segment_size=44100*5 #20s segments
length_data=len(data)
overlapsize=2048 #samples (46 ms)
window=np.hanning(2*overlapsize)
window_right=window[overlapsize::]
window_left=window[0:overlapsize]
audio_finished=False
pointer=0
denoised_data=np.zeros(shape=(len(data),))
residual_noise=np.zeros(shape=(len(data),))
numchunks=int(np.ceil(length_data/segment_size))
length_data = len(data)
overlapsize = 2048 # samples (46 ms)
window = np.hanning(2 * overlapsize)
window_right = window[overlapsize::]
window_left = window[0:overlapsize]
pointer = 0
denoised_data = np.zeros(shape=(len(data),))
residual_noise = np.zeros(shape=(len(data),))
numchunks = int(np.ceil(length_data / segment_size))
for i in tqdm(range(numchunks)):
if pointer+segment_size<length_data:
segment=data[pointer:pointer+segment_size]
#dostft
segment_TF=do_stft(segment)
segment_TF_ds=tf.data.Dataset.from_tensors(segment_TF)
if pointer + segment_size < length_data:
segment = data[pointer : pointer + segment_size]
# dostft
segment_TF = do_stft(segment)
segment_TF_ds = tf.data.Dataset.from_tensors(segment_TF)
pred = unet_model.predict(segment_TF_ds.batch(1))
pred=pred[0]
residual=segment_TF-pred[0]
residual=np.array(residual)
pred_time=do_istft(pred[0])
residual_time=do_istft(residual)
residual_time=np.array(residual_time)
pred = pred[0]
residual = segment_TF - pred[0]
residual = np.array(residual)
pred_time = do_istft(pred[0])
residual_time = do_istft(residual)
residual_time = np.array(residual_time)
if pointer==0:
pred_time=np.concatenate((pred_time[0:int(segment_size-overlapsize)], np.multiply(pred_time[int(segment_size-overlapsize):segment_size],window_right)), axis=0)
residual_time=np.concatenate((residual_time[0:int(segment_size-overlapsize)], np.multiply(residual_time[int(segment_size-overlapsize):segment_size],window_right)), axis=0)
if pointer == 0:
pred_time = np.concatenate(
(
pred_time[0 : int(segment_size - overlapsize)],
np.multiply(
pred_time[int(segment_size - overlapsize) : segment_size],
window_right,
),
),
axis=0,
)
residual_time = np.concatenate(
(
residual_time[0 : int(segment_size - overlapsize)],
np.multiply(
residual_time[
int(segment_size - overlapsize) : segment_size
],
window_right,
),
),
axis=0,
)
else:
pred_time=np.concatenate((np.multiply(pred_time[0:int(overlapsize)], window_left), pred_time[int(overlapsize):int(segment_size-overlapsize)], np.multiply(pred_time[int(segment_size-overlapsize):int(segment_size)],window_right)), axis=0)
residual_time=np.concatenate((np.multiply(residual_time[0:int(overlapsize)], window_left), residual_time[int(overlapsize):int(segment_size-overlapsize)], np.multiply(residual_time[int(segment_size-overlapsize):int(segment_size)],window_right)), axis=0)
pred_time = np.concatenate(
(
np.multiply(pred_time[0 : int(overlapsize)], window_left),
pred_time[int(overlapsize) : int(segment_size - overlapsize)],
np.multiply(
pred_time[
int(segment_size - overlapsize) : int(segment_size)
],
window_right,
),
),
axis=0,
)
residual_time = np.concatenate(
(
np.multiply(residual_time[0 : int(overlapsize)], window_left),
residual_time[
int(overlapsize) : int(segment_size - overlapsize)
],
np.multiply(
residual_time[
int(segment_size - overlapsize) : int(segment_size)
],
window_right,
),
),
axis=0,
)
denoised_data[pointer:pointer+segment_size]=denoised_data[pointer:pointer+segment_size]+pred_time
residual_noise[pointer:pointer+segment_size]=residual_noise[pointer:pointer+segment_size]+residual_time
denoised_data[pointer : pointer + segment_size] = (
denoised_data[pointer : pointer + segment_size] + pred_time
)
residual_noise[pointer : pointer + segment_size] = (
residual_noise[pointer : pointer + segment_size] + residual_time
)
pointer=pointer+segment_size-overlapsize
pointer = pointer + segment_size - overlapsize
else:
segment=data[pointer::]
lensegment=len(segment)
segment=np.concatenate((segment, np.zeros(shape=(int(segment_size-len(segment)),))), axis=0)
audio_finished=True
#dostft
segment_TF=do_stft(segment)
segment = data[pointer::]
lensegment = len(segment)
segment = np.concatenate(
(segment, np.zeros(shape=(int(segment_size - len(segment)),))), axis=0
)
# dostft
segment_TF = do_stft(segment)
segment_TF_ds=tf.data.Dataset.from_tensors(segment_TF)
segment_TF_ds = tf.data.Dataset.from_tensors(segment_TF)
pred = unet_model.predict(segment_TF_ds.batch(1))
pred=pred[0]
residual=segment_TF-pred[0]
residual=np.array(residual)
pred_time=do_istft(pred[0])
pred_time=np.array(pred_time)
pred_time=pred_time[0:segment_size]
residual_time=do_istft(residual)
residual_time=np.array(residual_time)
residual_time=residual_time[0:segment_size]
if pointer==0:
pred_time=pred_time
residual_time=residual_time
pred = pred[0]
residual = segment_TF - pred[0]
residual = np.array(residual)
pred_time = do_istft(pred[0])
pred_time = np.array(pred_time)
pred_time = pred_time[0:segment_size]
residual_time = do_istft(residual)
residual_time = np.array(residual_time)
residual_time = residual_time[0:segment_size]
if pointer == 0:
pred_time = pred_time
residual_time = residual_time
else:
pred_time=np.concatenate((np.multiply(pred_time[0:int(overlapsize)], window_left), pred_time[int(overlapsize):int(segment_size)]),axis=0)
residual_time=np.concatenate((np.multiply(residual_time[0:int(overlapsize)], window_left), residual_time[int(overlapsize):int(segment_size)]),axis=0)
pred_time = np.concatenate(
(
np.multiply(pred_time[0 : int(overlapsize)], window_left),
pred_time[int(overlapsize) : int(segment_size)],
),
axis=0,
)
residual_time = np.concatenate(
(
np.multiply(residual_time[0 : int(overlapsize)], window_left),
residual_time[int(overlapsize) : int(segment_size)],
),
axis=0,
)
denoised_data[pointer::]=denoised_data[pointer::]+pred_time[0:lensegment]
residual_noise[pointer::]=residual_noise[pointer::]+residual_time[0:lensegment]
denoised_data[pointer::] = (
denoised_data[pointer::] + pred_time[0:lensegment]
)
residual_noise[pointer::] = (
residual_noise[pointer::] + residual_time[0:lensegment]
)
basename=os.path.splitext(audio)[0]
wav_noisy_name=basename+"_noisy_input"+".wav"
basename = os.path.splitext(audio)[0]
wav_noisy_name = basename + "_noisy_input" + ".wav"
sf.write(wav_noisy_name, data, 44100)
wav_output_name=basename+"_denoised"+".wav"
wav_output_name = basename + "_denoised" + ".wav"
sf.write(wav_output_name, denoised_data, 44100)
wav_output_name=basename+"_residual"+".wav"
wav_output_name = basename + "_residual" + ".wav"
sf.write(wav_output_name, residual_noise, 44100)
@ -156,10 +233,3 @@ def main(args):
if __name__ == "__main__":
main()

View File

@ -1,5 +1,5 @@
#!/bin/bash
python inference.py inference.audio=$1
python inference.py inference.audio="$1"

181
train.py
View File

@ -4,143 +4,179 @@ import logging
logger = logging.getLogger(__name__)
def run(args):
import unet
import tensorflow as tf
import dataset_loader
from tensorflow.keras.optimizers import Adam
import soundfile as sf
import datetime
from tqdm import tqdm
import numpy as np
path_experiment=str(args.path_experiment)
path_experiment = str(args.path_experiment)
if not os.path.exists(path_experiment):
os.makedirs(path_experiment)
path_music_train=args.dset.path_music_train
path_music_test=args.dset.path_music_test
path_music_validation=args.dset.path_music_validation
path_music_train = args.dset.path_music_train
path_music_validation = args.dset.path_music_validation
path_noise=args.dset.path_noise
path_recordings=args.dset.path_recordings
path_noise = args.dset.path_noise
fs=args.fs
overlap=args.overlap
seg_len_s_train=args.seg_len_s_train
fs = args.fs
seg_len_s_train = args.seg_len_s_train
batch_size=args.batch_size
epochs=args.epochs
batch_size = args.batch_size
epochs = args.epochs
num_real_test_segments=args.num_real_test_segments
buffer_size=args.buffer_size #for shuffle
buffer_size = args.buffer_size # for shuffle
tensorboard_logs=args.tensorboard_logs
tensorboard_logs = args.tensorboard_logs
def do_stft(noisy, clean=None):
window_fn = tf.signal.hamming_window
win_size=args.stft.win_size
hop_size=args.stft.hop_size
win_size = args.stft.win_size
hop_size = args.stft.hop_size
stft_signal_noisy = tf.signal.stft(
noisy, frame_length=win_size, window_fn=window_fn, frame_step=hop_size
)
stft_noisy_stacked = tf.stack(
values=[tf.math.real(stft_signal_noisy), tf.math.imag(stft_signal_noisy)],
axis=-1,
)
stft_signal_noisy=tf.signal.stft(noisy,frame_length=win_size, window_fn=window_fn, frame_step=hop_size)
stft_noisy_stacked=tf.stack( values=[tf.math.real(stft_signal_noisy), tf.math.imag(stft_signal_noisy)], axis=-1)
if clean!=None:
stft_signal_clean=tf.signal.stft(clean,frame_length=win_size, window_fn=window_fn, frame_step=hop_size)
stft_clean_stacked=tf.stack( values=[tf.math.real(stft_signal_clean), tf.math.imag(stft_signal_clean)], axis=-1)
if clean is not None:
stft_signal_clean = tf.signal.stft(
clean, frame_length=win_size, window_fn=window_fn, frame_step=hop_size
)
stft_clean_stacked = tf.stack(
values=[
tf.math.real(stft_signal_clean),
tf.math.imag(stft_signal_clean),
],
axis=-1,
)
return stft_noisy_stacked, stft_clean_stacked
else:
return stft_noisy_stacked
#Loading data. The train dataset object is a generator. The validation dataset is loaded in memory.
# Loading data. The train dataset object is a generator. The validation dataset is loaded in memory.
dataset_train, dataset_val=dataset_loader.load_data(buffer_size, path_music_train, path_music_validation, path_noise, fs=fs, seg_len_s=seg_len_s_train)
dataset_train, dataset_val = dataset_loader.load_data(
buffer_size,
path_music_train,
path_music_validation,
path_noise,
fs=fs,
seg_len_s=seg_len_s_train,
)
dataset_train=dataset_train.map(do_stft, num_parallel_calls=args.num_workers, deterministic=None)
dataset_val=dataset_val.map(do_stft, num_parallel_calls=args.num_workers, deterministic=None)
dataset_train = dataset_train.map(
do_stft, num_parallel_calls=args.num_workers, deterministic=None
)
dataset_val = dataset_val.map(
do_stft, num_parallel_calls=args.num_workers, deterministic=None
)
strategy = tf.distribute.MirroredStrategy()
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
print("Number of devices: {}".format(strategy.num_replicas_in_sync))
with strategy.scope():
#build the model
# build the model
unet_model = unet.build_model_denoise(unet_args=args.unet)
current_lr=args.lr
current_lr = args.lr
optimizer = Adam(learning_rate=current_lr, beta_1=args.beta1, beta_2=args.beta2)
loss=tf.keras.losses.MeanAbsoluteError()
loss = tf.keras.losses.MeanAbsoluteError()
if args.use_tensorboard:
log_dir = os.path.join(tensorboard_logs, os.path.basename(path_experiment)+"_"+datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
train_summary_writer = tf.summary.create_file_writer(log_dir+"/train")
val_summary_writer = tf.summary.create_file_writer(log_dir+"/validation")
log_dir = os.path.join(
tensorboard_logs,
os.path.basename(path_experiment)
+ "_"
+ datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
)
train_summary_writer = tf.summary.create_file_writer(log_dir + "/train")
val_summary_writer = tf.summary.create_file_writer(log_dir + "/validation")
#path where the checkpoints will be saved
checkpoint_filepath=os.path.join(path_experiment, 'checkpoint')
# path where the checkpoints will be saved
checkpoint_filepath = os.path.join(path_experiment, "checkpoint")
dataset_train=dataset_train.batch(batch_size)
dataset_val=dataset_val.batch(batch_size)
dataset_train = dataset_train.batch(batch_size)
dataset_val = dataset_val.batch(batch_size)
#prefetching the dataset for better performance
dataset_train=dataset_train.prefetch(batch_size*20)
dataset_val=dataset_val.prefetch(batch_size*20)
# prefetching the dataset for better performance
dataset_train = dataset_train.prefetch(batch_size * 20)
dataset_val = dataset_val.prefetch(batch_size * 20)
dataset_train=strategy.experimental_distribute_dataset(dataset_train)
dataset_val=strategy.experimental_distribute_dataset(dataset_val)
dataset_train = strategy.experimental_distribute_dataset(dataset_train)
dataset_val = strategy.experimental_distribute_dataset(dataset_val)
iterator = iter(dataset_train)
from trainer import Trainer
trainer=Trainer(unet_model,optimizer,loss,strategy, path_experiment, args)
trainer = Trainer(unet_model, optimizer, loss, strategy, path_experiment, args)
for epoch in range(epochs):
total_loss=0
step_loss=0
for step in tqdm(range(args.steps_per_epoch), desc="Training epoch "+str(epoch)):
step_loss=trainer.distributed_training_step(iterator.get_next())
total_loss+=step_loss
total_loss = 0
step_loss = 0
for step in tqdm(
range(args.steps_per_epoch), desc="Training epoch " + str(epoch)
):
step_loss = trainer.distributed_training_step(iterator.get_next())
total_loss += step_loss
with train_summary_writer.as_default():
tf.summary.scalar('batch_loss', step_loss, step=step)
tf.summary.scalar('batch_mean_absolute_error', trainer.train_mae.result(), step=step)
tf.summary.scalar("batch_loss", step_loss, step=step)
tf.summary.scalar(
"batch_mean_absolute_error", trainer.train_mae.result(), step=step
)
train_loss=total_loss/args.steps_per_epoch
train_loss = total_loss / args.steps_per_epoch
for x in tqdm(dataset_val, desc="Validating epoch "+str(epoch)):
for x in tqdm(dataset_val, desc="Validating epoch " + str(epoch)):
trainer.distributed_test_step(x)
template = ("Epoch {}, Loss: {}, train_MAE: {}, val_Loss: {}, val_MAE: {}")
print (template.format(epoch+1, train_loss, trainer.train_mae.result(), trainer.val_loss.result(), trainer.val_mae.result()))
template = "Epoch {}, Loss: {}, train_MAE: {}, val_Loss: {}, val_MAE: {}"
print(
template.format(
epoch + 1,
train_loss,
trainer.train_mae.result(),
trainer.val_loss.result(),
trainer.val_mae.result(),
)
)
with train_summary_writer.as_default():
tf.summary.scalar('epoch_loss', train_loss, step=epoch)
tf.summary.scalar('epoch_mean_absolute_error', trainer.train_mae.result(), step=epoch)
tf.summary.scalar("epoch_loss", train_loss, step=epoch)
tf.summary.scalar(
"epoch_mean_absolute_error", trainer.train_mae.result(), step=epoch
)
with val_summary_writer.as_default():
tf.summary.scalar('epoch_loss', trainer.val_loss.result(), step=epoch)
tf.summary.scalar('epoch_mean_absolute_error', trainer.val_mae.result(), step=epoch)
tf.summary.scalar("epoch_loss", trainer.val_loss.result(), step=epoch)
tf.summary.scalar(
"epoch_mean_absolute_error", trainer.val_mae.result(), step=epoch
)
trainer.train_mae.reset_states()
trainer.val_loss.reset_states()
trainer.val_mae.reset_states()
if (epoch+1) % 50 == 0:
if (epoch + 1) % 50 == 0:
if args.variable_lr:
current_lr*=1e-1
trainer.optimizer.lr=current_lr
current_lr *= 1e-1
trainer.optimizer.lr = current_lr
try:
unet_model.save_weights(checkpoint_filpath)
except:
unet_model.save_weights(checkpoint_filepath)
except Exception:
pass
def _main(args):
global __file__
@ -161,10 +197,3 @@ def main(args):
if __name__ == "__main__":
main()

View File

@ -1,39 +1,37 @@
import os
import numpy as np
import tensorflow as tf
import soundfile as sf
from tqdm import tqdm
import pandas as pd
class Trainer():
def __init__(self, model, optimizer,loss, strategy, path_experiment, args):
self.model=model
class Trainer:
def __init__(self, model, optimizer, loss, strategy, path_experiment, args):
self.model = model
print(self.model.summary())
self.strategy=strategy
self.optimizer=optimizer
self.path_experiment=path_experiment
self.args=args
#self.metrics=[]
self.strategy = strategy
self.optimizer = optimizer
self.path_experiment = path_experiment
self.args = args
# self.metrics=[]
with self.strategy.scope():
#loss_fn=tf.keras.losses.mean_absolute_error
loss.reduction=tf.keras.losses.Reduction.NONE
self.loss_object=loss
self.train_mae_s1=tf.keras.metrics.MeanAbsoluteError(name="train_mae_s1")
self.train_mae=tf.keras.metrics.MeanAbsoluteError(name="train_mae_s2")
self.val_mae=tf.keras.metrics.MeanAbsoluteError(name="validation_mae")
self.val_loss = tf.keras.metrics.Mean(name='test_loss')
# loss_fn=tf.keras.losses.mean_absolute_error
loss.reduction = tf.keras.losses.Reduction.NONE
self.loss_object = loss
self.train_mae_s1 = tf.keras.metrics.MeanAbsoluteError(name="train_mae_s1")
self.train_mae = tf.keras.metrics.MeanAbsoluteError(name="train_mae_s2")
self.val_mae = tf.keras.metrics.MeanAbsoluteError(name="validation_mae")
self.val_loss = tf.keras.metrics.Mean(name="test_loss")
def train_step(self,inputs):
noisy, clean= inputs
def train_step(self, inputs):
noisy, clean = inputs
with tf.GradientTape() as tape:
logits_2, logits_1 = self.model(
noisy, training=True
) # Logits for this minibatch
logits_2,logits_1 = self.model(noisy, training=True) # Logits for this minibatch
loss_value = tf.reduce_mean(self.loss_object(clean, logits_2) + tf.reduce_mean(self.loss_object(clean, logits_1)))
loss_value = tf.reduce_mean(
self.loss_object(clean, logits_2)
+ tf.reduce_mean(self.loss_object(clean, logits_1))
)
grads = tape.gradient(loss_value, self.model.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.model.trainable_weights))
@ -41,26 +39,25 @@ class Trainer():
self.train_mae_s1.update_state(clean, logits_1)
return loss_value
def test_step(self,inputs):
noisy,clean = inputs
def test_step(self, inputs):
noisy, clean = inputs
predictions_s2, predictions_s1 = self.model(noisy, training=False)
t_loss = self.loss_object(clean, predictions_s2)+self.loss_object(clean, predictions_s1)
t_loss = self.loss_object(clean, predictions_s2) + self.loss_object(
clean, predictions_s1
)
self.val_mae.update_state(clean,predictions_s2)
self.val_mae.update_state(clean, predictions_s2)
self.val_loss.update_state(t_loss)
@tf.function()
def distributed_training_step(self,inputs):
per_replica_losses=self.strategy.run(self.train_step, args=(inputs,))
reduced_losses=self.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_losses, axis=None)
def distributed_training_step(self, inputs):
per_replica_losses = self.strategy.run(self.train_step, args=(inputs,))
reduced_losses = self.strategy.reduce(
tf.distribute.ReduceOp.MEAN, per_replica_losses, axis=None
)
return reduced_losses
@tf.function
def distributed_test_step(self,inputs):
def distributed_test_step(self, inputs):
return self.strategy.run(self.test_step, args=(inputs,))

564
unet.py
View File

@ -1,84 +1,93 @@
import tensorflow as tf
from tensorflow.keras import Model, Input
from tensorflow.keras import Input
from tensorflow.keras import layers
from tensorflow.keras.initializers import TruncatedNormal
import math as m
def build_model_denoise(unet_args=None):
inputs = Input(shape=(None, None, 2))
inputs=Input(shape=(None, None,2))
outputs_stage_2, outputs_stage_1 = MultiStage_denoise(unet_args=unet_args)(inputs)
outputs_stage_2,outputs_stage_1=MultiStage_denoise(unet_args=unet_args)(inputs)
#Encapsulating MultiStage_denoise in a keras.Model object
model= tf.keras.Model(inputs=inputs,outputs=[outputs_stage_2, outputs_stage_1])
# Encapsulating MultiStage_denoise in a keras.Model object
model = tf.keras.Model(inputs=inputs, outputs=[outputs_stage_2, outputs_stage_1])
return model
class DenseBlock(layers.Layer):
'''
"""
[B, T, F, N] => [B, T, F, N]
DenseNet Block consisting of "num_layers" densely connected convolutional layers
'''
def __init__(self, num_layers, N, ksize,activation):
'''
"""
def __init__(self, num_layers, N, ksize, activation):
"""
num_layers: number of densely connected conv. layers
N: Number of filters (same in each layer)
ksize: Kernel size (same in each layer)
'''
"""
super(DenseBlock, self).__init__()
self.activation=activation
self.activation = activation
self.paddings_1=get_paddings(ksize)
self.H=[]
self.num_layers=num_layers
self.paddings_1 = get_paddings(ksize)
self.H = []
self.num_layers = num_layers
for i in range(num_layers):
self.H.append(layers.Conv2D(filters=N,
self.H.append(
layers.Conv2D(
filters=N,
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=self.activation))
padding="VALID",
activation=self.activation,
)
)
def call(self, x):
x_=tf.pad(x, self.paddings_1, mode='SYMMETRIC')
x_ = tf.pad(x, self.paddings_1, mode="SYMMETRIC")
x_ = self.H[0](x_)
if self.num_layers>1:
if self.num_layers > 1:
for h in self.H[1:]:
x = tf.concat([x_, x], axis=-1)
x_=tf.pad(x, self.paddings_1, mode='SYMMETRIC')
x_ = tf.pad(x, self.paddings_1, mode="SYMMETRIC")
x_ = h(x_)
return x_
class FinalBlock(layers.Layer):
'''
"""
[B, T, F, N] => [B, T, F, 2]
Final block. Basically, a 3x3 conv. layer to map the output features to the output complex spectrogram.
'''
"""
def __init__(self):
super(FinalBlock, self).__init__()
ksize=(3,3)
self.paddings_2=get_paddings(ksize)
self.conv2=layers.Conv2D(filters=2,
ksize = (3, 3)
self.paddings_2 = get_paddings(ksize)
self.conv2 = layers.Conv2D(
filters=2,
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=None)
padding="VALID",
activation=None,
)
def call(self, inputs ):
x=tf.pad(inputs, self.paddings_2, mode='SYMMETRIC')
pred=self.conv2(x)
def call(self, inputs):
x = tf.pad(inputs, self.paddings_2, mode="SYMMETRIC")
pred = self.conv2(x)
return pred
class SAM(layers.Layer):
'''
"""
[B, T, F, N] => [B, T, F, N] , [B, T, F, N]
Supervised Attention Module:
The purpose of SAM is to make the network only propagate the most relevant features to the second stage, discarding the less useful ones.
@ -86,390 +95,424 @@ class SAM(layers.Layer):
The first stage output is then calculated adding the original input spectrogram to the residual noise.
The attention-guided features are computed using the attention masks M, which are directly calculated from the first stage output with a 1x1 convolution and a sigmoid function.
'''
"""
def __init__(self, n_feat):
super(SAM, self).__init__()
ksize=(3,3)
self.paddings_1=get_paddings(ksize)
self.conv1 = layers.Conv2D(filters=n_feat,
ksize = (3, 3)
self.paddings_1 = get_paddings(ksize)
self.conv1 = layers.Conv2D(
filters=n_feat,
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=None)
ksize=(3,3)
self.paddings_2=get_paddings(ksize)
self.conv2=layers.Conv2D(filters=2,
padding="VALID",
activation=None,
)
ksize = (3, 3)
self.paddings_2 = get_paddings(ksize)
self.conv2 = layers.Conv2D(
filters=2,
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=None)
padding="VALID",
activation=None,
)
ksize=(3,3)
self.paddings_3=get_paddings(ksize)
self.conv3 = layers.Conv2D(filters=n_feat,
ksize = (3, 3)
self.paddings_3 = get_paddings(ksize)
self.conv3 = layers.Conv2D(
filters=n_feat,
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=None)
self.cropadd=CropAddBlock()
padding="VALID",
activation=None,
)
self.cropadd = CropAddBlock()
def call(self, inputs, input_spectrogram):
x1=tf.pad(inputs, self.paddings_1, mode='SYMMETRIC')
x1 = tf.pad(inputs, self.paddings_1, mode="SYMMETRIC")
x1 = self.conv1(x1)
x=tf.pad(inputs, self.paddings_2, mode='SYMMETRIC')
x=self.conv2(x)
x = tf.pad(inputs, self.paddings_2, mode="SYMMETRIC")
x = self.conv2(x)
#residual prediction
pred = layers.Add()([x, input_spectrogram]) #features to next stage
# residual prediction
pred = layers.Add()([x, input_spectrogram]) # features to next stage
x3=tf.pad(pred, self.paddings_3, mode='SYMMETRIC')
M=self.conv3(x3)
x3 = tf.pad(pred, self.paddings_3, mode="SYMMETRIC")
M = self.conv3(x3)
M= tf.keras.activations.sigmoid(M)
x1=layers.Multiply()([x1, M])
x1 = layers.Add()([x1, inputs]) #features to next stage
M = tf.keras.activations.sigmoid(M)
x1 = layers.Multiply()([x1, M])
x1 = layers.Add()([x1, inputs]) # features to next stage
return x1, pred
class AddFreqEncoding(layers.Layer):
'''
"""
[B, T, F, 2] => [B, T, F, 12]
Generates frequency positional embeddings and concatenates them as 10 extra channels
This function is optimized for F=1025
'''
"""
def __init__(self, f_dim):
super(AddFreqEncoding, self).__init__()
pi = tf.constant(m.pi)
pi=tf.cast(pi,'float32')
self.f_dim=f_dim #f_dim is fixed
n=tf.cast(tf.range(f_dim)/(f_dim-1),'float32')
coss=tf.math.cos(pi*n)
f_channel = tf.expand_dims(coss, -1) #(1025,1)
self.fembeddings= f_channel
for k in range(1,10):
coss=tf.math.cos(2**k*pi*n)
f_channel = tf.expand_dims(coss, -1) #(1025,1)
self.fembeddings=tf.concat([self.fembeddings,f_channel],axis=-1) #(1025,10)
pi = tf.cast(pi, "float32")
self.f_dim = f_dim # f_dim is fixed
n = tf.cast(tf.range(f_dim) / (f_dim - 1), "float32")
coss = tf.math.cos(pi * n)
f_channel = tf.expand_dims(coss, -1) # (1025,1)
self.fembeddings = f_channel
for k in range(1, 10):
coss = tf.math.cos(2**k * pi * n)
f_channel = tf.expand_dims(coss, -1) # (1025,1)
self.fembeddings = tf.concat(
[self.fembeddings, f_channel], axis=-1
) # (1025,10)
def call(self, input_tensor):
batch_size_tensor = tf.shape(input_tensor)[0] # get batch size
time_dim = tf.shape(input_tensor)[1] # get time dimension
fembeddings_2 = tf.broadcast_to(self.fembeddings, [batch_size_tensor, time_dim, self.f_dim, 10])
fembeddings_2 = tf.broadcast_to(
self.fembeddings, [batch_size_tensor, time_dim, self.f_dim, 10]
)
return tf.concat([input_tensor,fembeddings_2],axis=-1) #(batch,427,1025,12)
return tf.concat([input_tensor, fembeddings_2], axis=-1) # (batch,427,1025,12)
def get_paddings(K):
return tf.constant([[0,0],[K[0]//2, K[0]//2 -(1- K[0]%2) ], [ K[1]//2, K[1]//2 -(1- K[1]%2) ],[0,0]])
return tf.constant(
[
[0, 0],
[K[0] // 2, K[0] // 2 - (1 - K[0] % 2)],
[K[1] // 2, K[1] // 2 - (1 - K[1] % 2)],
[0, 0],
]
)
class Decoder(layers.Layer):
'''
"""
[B, T, F, N] , skip connections => [B, T, F, N]
Decoder side of the U-Net subnetwork.
'''
"""
def __init__(self, Ns, Ss, unet_args):
super(Decoder, self).__init__()
self.Ns=Ns
self.Ss=Ss
self.activation=unet_args.activation
self.depth=unet_args.depth
self.Ns = Ns
self.Ss = Ss
self.activation = unet_args.activation
self.depth = unet_args.depth
ksize=(3,3)
self.paddings_3=get_paddings(ksize)
self.conv2d_3=layers.Conv2D(filters=self.Ns[self.depth],
ksize = (3, 3)
self.paddings_3 = get_paddings(ksize)
self.conv2d_3 = layers.Conv2D(
filters=self.Ns[self.depth],
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=self.activation)
padding="VALID",
activation=self.activation,
)
self.cropadd=CropAddBlock()
self.cropadd = CropAddBlock()
self.dblocks=[]
self.dblocks = []
for i in range(self.depth):
self.dblocks.append(D_Block(layer_idx=i,N=self.Ns[i], S=self.Ss[i], activation=self.activation,num_tfc=unet_args.num_tfc))
self.dblocks.append(
D_Block(
layer_idx=i,
N=self.Ns[i],
S=self.Ss[i],
activation=self.activation,
num_tfc=unet_args.num_tfc,
)
)
def call(self,inputs, contracting_layers):
x=inputs
for i in range(self.depth,0,-1):
x=self.dblocks[i-1](x, contracting_layers[i-1])
def call(self, inputs, contracting_layers):
x = inputs
for i in range(self.depth, 0, -1):
x = self.dblocks[i - 1](x, contracting_layers[i - 1])
return x
class Encoder(tf.keras.Model):
'''
class Encoder(tf.keras.Model):
"""
[B, T, F, N] => skip connections , [B, T, F, N_4]
Encoder side of the U-Net subnetwork.
'''
"""
def __init__(self, Ns, Ss, unet_args):
super(Encoder, self).__init__()
self.Ns=Ns
self.Ss=Ss
self.activation=unet_args.activation
self.depth=unet_args.depth
self.Ns = Ns
self.Ss = Ss
self.activation = unet_args.activation
self.depth = unet_args.depth
self.contracting_layers = {}
self.eblocks=[]
self.eblocks = []
for i in range(self.depth):
self.eblocks.append(E_Block(layer_idx=i,N0=self.Ns[i],N=self.Ns[i+1],S=self.Ss[i], activation=self.activation , num_tfc=unet_args.num_tfc))
self.eblocks.append(
E_Block(
layer_idx=i,
N0=self.Ns[i],
N=self.Ns[i + 1],
S=self.Ss[i],
activation=self.activation,
num_tfc=unet_args.num_tfc,
)
)
self.i_block=I_Block(self.Ns[self.depth],self.activation,unet_args.num_tfc)
self.i_block = I_Block(self.Ns[self.depth], self.activation, unet_args.num_tfc)
def call(self, inputs):
x=inputs
x = inputs
for i in range(self.depth):
x, x_contract = self.eblocks[i](x)
x, x_contract=self.eblocks[i](x)
self.contracting_layers[i] = x_contract #if remove 0, correct this
x=self.i_block(x)
self.contracting_layers[i] = x_contract # if remove 0, correct this
x = self.i_block(x)
return x, self.contracting_layers
class MultiStage_denoise(tf.keras.Model):
class MultiStage_denoise(tf.keras.Model):
def __init__(self, unet_args=None):
super(MultiStage_denoise, self).__init__()
self.activation=unet_args.activation
self.depth=unet_args.depth
self.activation = unet_args.activation
self.depth = unet_args.depth
if unet_args.use_fencoding:
self.freq_encoding=AddFreqEncoding(unet_args.f_dim)
self.use_sam=unet_args.use_SAM
self.use_fencoding=unet_args.use_fencoding
self.num_stages=unet_args.num_stages
#Encoder
self.Ns= [32,64,64,128,128,256,512]
self.Ss= [(2,2),(2,2),(2,2),(2,2),(2,2),(2,2)]
self.freq_encoding = AddFreqEncoding(unet_args.f_dim)
self.use_sam = unet_args.use_SAM
self.use_fencoding = unet_args.use_fencoding
self.num_stages = unet_args.num_stages
# Encoder
self.Ns = [32, 64, 64, 128, 128, 256, 512]
self.Ss = [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)]
#initial feature extractor
ksize=(7,7)
self.paddings_1=get_paddings(ksize)
self.conv2d_1 = layers.Conv2D(filters=self.Ns[0],
# initial feature extractor
ksize = (7, 7)
self.paddings_1 = get_paddings(ksize)
self.conv2d_1 = layers.Conv2D(
filters=self.Ns[0],
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=self.activation)
padding="VALID",
activation=self.activation,
)
self.encoder_s1=Encoder(self.Ns, self.Ss, unet_args)
self.decoder_s1=Decoder(self.Ns, self.Ss, unet_args)
self.encoder_s1 = Encoder(self.Ns, self.Ss, unet_args)
self.decoder_s1 = Decoder(self.Ns, self.Ss, unet_args)
self.cropconcat = CropConcatBlock()
self.cropadd = CropAddBlock()
self.finalblock=FinalBlock()
self.finalblock = FinalBlock()
if self.num_stages>1:
self.sam_1=SAM(self.Ns[0])
if self.num_stages > 1:
self.sam_1 = SAM(self.Ns[0])
#initial feature extractor
ksize=(7,7)
self.paddings_2=get_paddings(ksize)
self.conv2d_2 = layers.Conv2D(filters=self.Ns[0],
# initial feature extractor
ksize = (7, 7)
self.paddings_2 = get_paddings(ksize)
self.conv2d_2 = layers.Conv2D(
filters=self.Ns[0],
kernel_size=ksize,
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID',
activation=self.activation)
padding="VALID",
activation=self.activation,
)
self.encoder_s2=Encoder(self.Ns, self.Ss, unet_args)
self.decoder_s2=Decoder(self.Ns, self.Ss, unet_args)
self.encoder_s2 = Encoder(self.Ns, self.Ss, unet_args)
self.decoder_s2 = Decoder(self.Ns, self.Ss, unet_args)
@tf.function()
def call(self, inputs):
if self.use_fencoding:
x_w_freq=self.freq_encoding(inputs) #None, None, 1025, 12
x_w_freq = self.freq_encoding(inputs) # None, None, 1025, 12
else:
x_w_freq=inputs
x_w_freq = inputs
#intitial feature extractor
x=tf.pad(x_w_freq, self.paddings_1, mode='SYMMETRIC')
x=self.conv2d_1(x) #None, None, 1025, 32
# intitial feature extractor
x = tf.pad(x_w_freq, self.paddings_1, mode="SYMMETRIC")
x = self.conv2d_1(x) # None, None, 1025, 32
x, contracting_layers_s1= self.encoder_s1(x)
#decoder
feats_s1 =self.decoder_s1(x, contracting_layers_s1) #None, None, 1025, 32 features
x, contracting_layers_s1 = self.encoder_s1(x)
# decoder
feats_s1 = self.decoder_s1(
x, contracting_layers_s1
) # None, None, 1025, 32 features
if self.num_stages>1:
#SAM module
Fout, pred_stage_1=self.sam_1(feats_s1,inputs)
if self.num_stages > 1:
# SAM module
Fout, pred_stage_1 = self.sam_1(feats_s1, inputs)
#intitial feature extractor
x=tf.pad(x_w_freq, self.paddings_2, mode='SYMMETRIC')
x=self.conv2d_2(x)
# intitial feature extractor
x = tf.pad(x_w_freq, self.paddings_2, mode="SYMMETRIC")
x = self.conv2d_2(x)
if self.use_sam:
x = tf.concat([x, Fout], axis=-1)
else:
x = tf.concat([x,feats_s1], axis=-1)
x = tf.concat([x, feats_s1], axis=-1)
x, contracting_layers_s2= self.encoder_s2(x)
x, contracting_layers_s2 = self.encoder_s2(x)
feats_s2=self.decoder_s2(x, contracting_layers_s2) #None, None, 1025, 32 features
feats_s2 = self.decoder_s2(
x, contracting_layers_s2
) # None, None, 1025, 32 features
#consider implementing a third stage?
# consider implementing a third stage?
pred_stage_2=self.finalblock(feats_s2)
pred_stage_2 = self.finalblock(feats_s2)
return pred_stage_2, pred_stage_1
else:
pred_stage_1=self.finalblock(feats_s1)
pred_stage_1 = self.finalblock(feats_s1)
return pred_stage_1
class I_Block(layers.Layer):
'''
"""
[B, T, F, N] => [B, T, F, N]
Intermediate block:
Basically, a densenet block with a residual connection
'''
def __init__(self,N,activation, num_tfc, **kwargs):
"""
def __init__(self, N, activation, num_tfc, **kwargs):
super(I_Block, self).__init__(**kwargs)
ksize=(3,3)
self.tfc=DenseBlock(num_tfc,N,ksize, activation)
ksize = (3, 3)
self.tfc = DenseBlock(num_tfc, N, ksize, activation)
self.conv2d_res= layers.Conv2D(filters=N,
kernel_size=(1,1),
self.conv2d_res = layers.Conv2D(
filters=N,
kernel_size=(1, 1),
kernel_initializer=TruncatedNormal(),
strides=1,
padding='VALID')
padding="VALID",
)
def call(self,inputs):
x=self.tfc(inputs)
def call(self, inputs):
x = self.tfc(inputs)
inputs_proj=self.conv2d_res(inputs)
return layers.Add()([x,inputs_proj])
inputs_proj = self.conv2d_res(inputs)
return layers.Add()([x, inputs_proj])
class E_Block(layers.Layer):
def __init__(self, layer_idx,N0, N, S,activation, num_tfc, **kwargs):
def __init__(self, layer_idx, N0, N, S, activation, num_tfc, **kwargs):
super(E_Block, self).__init__(**kwargs)
self.layer_idx=layer_idx
self.N0=N0
self.N=N
self.S=S
self.activation=activation
self.i_block=I_Block(N0,activation,num_tfc)
self.layer_idx = layer_idx
self.N0 = N0
self.N = N
self.S = S
self.activation = activation
self.i_block = I_Block(N0, activation, num_tfc)
ksize=(S[0]+2,S[1]+2)
self.paddings_2=get_paddings(ksize)
self.conv2d_2 = layers.Conv2D(filters=N,
kernel_size=(S[0]+2,S[1]+2),
ksize = (S[0] + 2, S[1] + 2)
self.paddings_2 = get_paddings(ksize)
self.conv2d_2 = layers.Conv2D(
filters=N,
kernel_size=(S[0] + 2, S[1] + 2),
kernel_initializer=TruncatedNormal(),
strides=S,
padding='VALID',
activation=self.activation)
padding="VALID",
activation=self.activation,
)
def call(self, inputs, training=None, **kwargs):
x=self.i_block(inputs)
x = self.i_block(inputs)
x_down=tf.pad(x, self.paddings_2, mode='SYMMETRIC')
x_down = tf.pad(x, self.paddings_2, mode="SYMMETRIC")
x_down = self.conv2d_2(x_down)
return x_down, x
def get_config(self):
return dict(layer_idx=self.layer_idx,
return dict(
layer_idx=self.layer_idx,
N=self.N,
S=self.S,
**super(E_Block, self).get_config()
**super(E_Block, self).get_config(),
)
class D_Block(layers.Layer):
def __init__(self, layer_idx, N, S,activation, num_tfc, **kwargs):
def __init__(self, layer_idx, N, S, activation, num_tfc, **kwargs):
super(D_Block, self).__init__(**kwargs)
self.layer_idx=layer_idx
self.N=N
self.S=S
self.activation=activation
ksize=(S[0]+2, S[1]+2)
self.paddings_1=get_paddings(ksize)
self.layer_idx = layer_idx
self.N = N
self.S = S
self.activation = activation
ksize = (S[0] + 2, S[1] + 2)
self.paddings_1 = get_paddings(ksize)
self.tconv_1= layers.Conv2DTranspose(filters=N,
kernel_size=(S[0]+2, S[1]+2),
self.tconv_1 = layers.Conv2DTranspose(
filters=N,
kernel_size=(S[0] + 2, S[1] + 2),
kernel_initializer=TruncatedNormal(),
strides=S,
activation=self.activation,
padding='VALID')
padding="VALID",
)
self.upsampling = layers.UpSampling2D(size=S, interpolation='nearest')
self.upsampling = layers.UpSampling2D(size=S, interpolation="nearest")
self.projection = layers.Conv2D(filters=N,
kernel_size=(1,1),
self.projection = layers.Conv2D(
filters=N,
kernel_size=(1, 1),
kernel_initializer=TruncatedNormal(),
strides=1,
activation=self.activation,
padding='VALID')
self.cropadd=CropAddBlock()
self.cropconcat=CropConcatBlock()
padding="VALID",
)
self.cropadd = CropAddBlock()
self.cropconcat = CropConcatBlock()
self.i_block=I_Block(N,activation,num_tfc)
self.i_block = I_Block(N, activation, num_tfc)
def call(self, inputs, bridge, previous_encoder=None, previous_decoder=None,**kwargs):
def call(
self, inputs, bridge, previous_encoder=None, previous_decoder=None, **kwargs
):
x = inputs
x=tf.pad(x, self.paddings_1, mode='SYMMETRIC')
x = tf.pad(x, self.paddings_1, mode="SYMMETRIC")
x = self.tconv_1(inputs)
x2= self.upsampling(inputs)
x2 = self.upsampling(inputs)
if x2.shape[-1]!=x.shape[-1]:
x2= self.projection(x2)
if x2.shape[-1] != x.shape[-1]:
x2 = self.projection(x2)
x= self.cropadd(x,x2)
x = self.cropadd(x, x2)
x = self.cropconcat(x, bridge)
x=self.cropconcat(x,bridge)
x=self.i_block(x)
x = self.i_block(x)
return x
def get_config(self):
return dict(layer_idx=self.layer_idx,
return dict(
layer_idx=self.layer_idx,
N=self.N,
S=self.S,
**super(D_Block, self).get_config()
**super(D_Block, self).get_config(),
)
class CropAddBlock(layers.Layer):
def call(self,down_layer, x, **kwargs):
x1_shape = tf.shape(down_layer)
x2_shape = tf.shape(x)
height_diff = (x1_shape[1] - x2_shape[1]) // 2
width_diff = (x1_shape[2] - x2_shape[2]) // 2
down_layer_cropped = down_layer[:,
height_diff: (x2_shape[1] + height_diff),
width_diff: (x2_shape[2] + width_diff),
:]
x = layers.Add()([down_layer_cropped, x])
return x
class CropConcatBlock(layers.Layer):
def call(self, down_layer, x, **kwargs):
x1_shape = tf.shape(down_layer)
x2_shape = tf.shape(x)
@ -477,10 +520,31 @@ class CropConcatBlock(layers.Layer):
height_diff = (x1_shape[1] - x2_shape[1]) // 2
width_diff = (x1_shape[2] - x2_shape[2]) // 2
down_layer_cropped = down_layer[:,
height_diff: (x2_shape[1] + height_diff),
width_diff: (x2_shape[2] + width_diff),
:]
down_layer_cropped = down_layer[
:,
height_diff : (x2_shape[1] + height_diff),
width_diff : (x2_shape[2] + width_diff),
:,
]
x = layers.Add()([down_layer_cropped, x])
return x
class CropConcatBlock(layers.Layer):
def call(self, down_layer, x, **kwargs):
x1_shape = tf.shape(down_layer)
x2_shape = tf.shape(x)
height_diff = (x1_shape[1] - x2_shape[1]) // 2
width_diff = (x1_shape[2] - x2_shape[2]) // 2
down_layer_cropped = down_layer[
:,
height_diff : (x2_shape[1] + height_diff),
width_diff : (x2_shape[2] + width_diff),
:,
]
x = tf.concat([down_layer_cropped, x], axis=-1)
return x